IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v77y2021ics0038012121000161.html
   My bibliography  Save this article

Fuzzy modelling of static system optimum traffic assignment problem having multi origin-destination pair

Author

Listed:
  • Temelcan, Gizem
  • Kocken, Hale Gonce
  • Albayrak, Inci

Abstract

Traffic congestion is an unpreventable problem to avoid in a transportation network and it has negative effects on traffic accident, time wasting, traffic delay and safety problem. Besides, in transportation networks, drivers do not want to deal with traffic jam while traversing between specified origin-destination pair. Therefore, traffic assignment (TA) is imperative to improve traffic management, transportation safety, time, and cost savings. System Optimum Traffic Assignment Problem (SOTAP) is a kind of TA model which aims to minimize the total system travel time on the network, and satisfies the flow conservation constraints. To model the SOTAP more realistically, the imprecise parameters can be taken as fuzzy. Therefore, in this paper, we focus on converting the conventional SOTAP to a fuzzy quadratic programming problem (QPP) which is named System Optimum Fuzzy Traffic Assignment Problem (SOFTAP). Here, link travel time is expressed with BPR function as generally used in the literature by converting to fuzzy except link-dependent parameters. Thus, the nonlinear objective function of SOFTAP is expressed in terms of fuzzy link flows and fuzzy link travel times. A solution approach from the literature is modified to the reconstructed SOFTAP.

Suggested Citation

  • Temelcan, Gizem & Kocken, Hale Gonce & Albayrak, Inci, 2021. "Fuzzy modelling of static system optimum traffic assignment problem having multi origin-destination pair," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
  • Handle: RePEc:eee:soceps:v:77:y:2021:i:c:s0038012121000161
    DOI: 10.1016/j.seps.2021.101024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012121000161
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2021.101024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heinz Spiess, 1990. "Technical Note—Conical Volume-Delay Functions," Transportation Science, INFORMS, vol. 24(2), pages 153-158, May.
    2. Bliemer, Michiel C.J. & Raadsen, Mark P.H. & Smits, Erik-Sander & Zhou, Bojian & Bell, Michael G.H., 2014. "Quasi-dynamic traffic assignment with residual point queues incorporating a first order node model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 363-384.
    3. Chow, Andy H.F., 2009. "Properties of system optimal traffic assignment with departure time choice and its solution method," Transportation Research Part B: Methodological, Elsevier, vol. 43(3), pages 325-344, March.
    4. Ghatee, Mehdi & Hashemi, S. Mehdi, 2009. "Traffic assignment model with fuzzy level of travel demand: An efficient algorithm based on quasi-Logit formulas," European Journal of Operational Research, Elsevier, vol. 194(2), pages 432-451, April.
    5. Chen, Yuh-Wen & Tzeng, Gwo-Hshiung, 2001. "Using fuzzy integral for evaluating subjectively perceived travel costs in a traffic assignment model," European Journal of Operational Research, Elsevier, vol. 130(3), pages 653-664, May.
    6. Daganzo, Carlos F., 1995. "Properties of link travel time functions under dynamic loads," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 95-98, April.
    7. Tampère, Chris M.J. & Corthout, Ruben & Cattrysse, Dirk & Immers, Lambertus H., 2011. "A generic class of first order node models for dynamic macroscopic simulation of traffic flows," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 289-309, January.
    8. Carey, Malachy & Ge, Y. E., 2003. "Comparing whole-link travel time models," Transportation Research Part B: Methodological, Elsevier, vol. 37(10), pages 905-926, December.
    9. Nie, Yu (Marco), 2010. "A class of bush-based algorithms for the traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 73-89, January.
    10. He, Xiaozheng & Guo, Xiaolei & Liu, Henry X., 2010. "A link-based day-to-day traffic assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 597-608, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qingyuan Yan & Yang Gao & Ling Xing & Binrui Xu & Yanxue Li & Weili Chen, 2024. "Optimal Scheduling for Increased Satisfaction of Both Electric Vehicle Users and Grid Fast-Charging Stations by SOR&KANO and MVO in PV-Connected Distribution Network," Energies, MDPI, vol. 17(14), pages 1-36, July.
    2. Sun, Wenjun & Zhu, Changfeng & Li, Hui, 2022. "Evolutionary game of emergency logistics path selection under bounded rationality," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Smith, Mike & Huang, Wei & Viti, Francesco & Tampère, Chris M.J. & Lo, Hong K., 2019. "Quasi-dynamic traffic assignment with spatial queueing, control and blocking back," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 140-166.
    2. Qixiu Cheng & Zhiyuan Liu & Feifei Liu & Ruo Jia, 2017. "Urban dynamic congestion pricing: an overview and emerging research needs," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 21(0), pages 3-18, August.
    3. Bliemer, Michiel C.J. & Raadsen, Mark P.H., 2020. "Static traffic assignment with residual queues and spillback," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 303-319.
    4. Carey, Malachy & Humphreys, Paul & McHugh, Marie & McIvor, Ronan, 2014. "Extending travel-time based models for dynamic network loading and assignment, to achieve adherence to first-in-first-out and link capacities," Transportation Research Part B: Methodological, Elsevier, vol. 65(C), pages 90-104.
    5. Jiancheng Long & Wai Yuen Szeto, 2019. "Link-Based System Optimum Dynamic Traffic Assignment Problems in General Networks," Operations Research, INFORMS, vol. 67(1), pages 167-182, January.
    6. Liu, Ronghui & Smith, Mike, 2015. "Route choice and traffic signal control: A study of the stability and instability of a new dynamical model of route choice and traffic signal control," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 123-145.
    7. Wang, Yi & Szeto, W.Y. & Han, Ke & Friesz, Terry L., 2018. "Dynamic traffic assignment: A review of the methodological advances for environmentally sustainable road transportation applications," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 370-394.
    8. Smith, Mike & Mounce, Richard, 2011. "A splitting rate model of traffic re-routeing and traffic control," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1389-1409.
    9. Jabari, Saif Eddin, 2016. "Node modeling for congested urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 229-249.
    10. Long, Jiancheng & Wang, Chao & Szeto, W.Y., 2018. "Dynamic system optimum simultaneous route and departure time choice problems: Intersection-movement-based formulations and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 166-206.
    11. Ban, Xuegang (Jeff) & Pang, Jong-Shi & Liu, Henry X. & Ma, Rui, 2012. "Continuous-time point-queue models in dynamic network loading," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 360-380.
    12. Smith, M.J. & Liu, R. & Mounce, R., 2015. "Traffic control and route choice: Capacity maximisation and stability," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 863-885.
    13. Raadsen, Mark P.H. & Bliemer, Michiel C.J., 2023. "General solution scheme for the static link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 169(C), pages 108-135.
    14. Himpe, Willem & Corthout, Ruben & Tampère, M.J. Chris, 2016. "An efficient iterative link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 170-190.
    15. Brederode, Luuk & Pel, Adam & Wismans, Luc & Rijksen, Bernike & Hoogendoorn, Serge, 2023. "Travel demand matrix estimation for strategic road traffic assignment models with strict capacity constraints and residual queues," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 1-31.
    16. Raadsen, Mark P.H. & Bliemer, Michiel C.J., 2019. "Continuous-time general link transmission model with simplified fanning, Part II: Event-based algorithm for networks," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 471-501.
    17. Meng Li & Guowei Hua & Haijun Huang, 2018. "A Multi-Modal Route Choice Model with Ridesharing and Public Transit," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    18. Hoang, Nam H. & Vu, Hai L. & Lo, Hong K., 2018. "An informed user equilibrium dynamic traffic assignment problem in a multiple origin-destination stochastic network," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 207-230.
    19. Xu, Zhandong & Xie, Jun & Liu, Xiaobo & Nie, Yu (Marco), 2020. "Hyperpath-based algorithms for the transit equilibrium assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    20. Abdelfettah Laouzai & Rachid Ouafi, 2022. "A prediction model for atmospheric pollution reduction from urban traffic," Environment and Planning B, , vol. 49(2), pages 566-584, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:77:y:2021:i:c:s0038012121000161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.