IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v71y2020ics0038012118301472.html
   My bibliography  Save this article

Robust scheduling for large scale evacuation planning

Author

Listed:
  • Lakshay,
  • Bolia, Nomesh B.

Abstract

It is crucial to develop appropriate strategies to reduce the evacuation time in a disaster situation. The negative impact of large scale disasters can be mitigated by proactive and efficient (time optimal) evacuation planning. The present study aims to develop strategies for public transit-based evacuation for better control and reduced congestion. Mathematical models are formulated for both strategic and operational aspects of evacuation planning to result in efficient, optimal evacuation. The study also presents methods to manage the external environment uncertainties, in particular, evacuation demand uncertainty, by providing robust solutions. To test the efficacy of the models, a case study for a radiological accident in a nuclear plant in India is presented. The results of the case study demonstrate that the models can provide live, efficient and robust results during actual emergencies in acceptable time.

Suggested Citation

  • Lakshay, & Bolia, Nomesh B., 2020. "Robust scheduling for large scale evacuation planning," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
  • Handle: RePEc:eee:soceps:v:71:y:2020:i:c:s0038012118301472
    DOI: 10.1016/j.seps.2019.100756
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012118301472
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2019.100756?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suman, Hemant K. & Bolia, Nomesh B., 2019. "Improvement in direct bus services through route planning," Transport Policy, Elsevier, vol. 81(C), pages 263-274.
    2. Debjit Roy & Anuj Sharma, 2014. "Location Identification for Rapid Evacuation from a Disaster Site: A Case Study from KAPS," Working Papers id:6225, eSocialSciences.
    3. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    4. Cova, Thomas J. & Johnson, Justin P., 2003. "A network flow model for lane-based evacuation routing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(7), pages 579-604, August.
    5. Eliahu Stern & Zila Sinuany‐Stern, 1989. "A Behavioural‐Based Simulation Model For Urban Evacuation," Papers in Regional Science, Wiley Blackwell, vol. 66(1), pages 87-103, January.
    6. Joel Goh & Melvyn Sim, 2011. "Robust Optimization Made Easy with ROME," Operations Research, INFORMS, vol. 59(4), pages 973-985, August.
    7. Roy, Debjit & Anuj Sharma & Ashish Kumar & Vivek Saurabh, 2014. "Location Identification for Rapid Evacuation from a Disaster Site: A Case Study from KAPS," IIMA Working Papers WP2014-09-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    8. Gorissen, Bram L. & Yanıkoğlu, İhsan & den Hertog, Dick, 2015. "A practical guide to robust optimization," Omega, Elsevier, vol. 53(C), pages 124-137.
    9. Bhatnagar, Abhishek & Bolia, Nomesh B., 2019. "Improved governance of Indian school system through school consolidation," Journal of Policy Modeling, Elsevier, vol. 41(6), pages 1160-1178.
    10. Daoliang, Zhao & Lizhong, Yang & Jian, Li, 2006. "Exit dynamics of occupant evacuation in an emergency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 501-511.
    11. Ng, ManWo & Waller, S. Travis, 2010. "Reliable evacuation planning via demand inflation and supply deflation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(6), pages 1086-1094, November.
    12. Goerigk, Marc & Deghdak, Kaouthar & T’Kindt, Vincent, 2015. "A two-stage robustness approach to evacuation planning with buses," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 66-82.
    13. Fanwen Meng & Jin Qi & Meilin Zhang & James Ang & Singfat Chu & Melvyn Sim, 2015. "A Robust Optimization Model for Managing Elective Admission in a Public Hospital," Operations Research, INFORMS, vol. 63(6), pages 1452-1467, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Enze & Barker, Kash & Chen, Hong, 2022. "A multi-modal evacuation-based response strategy for mitigating disruption in an intercity railway system," Reliability Engineering and System Safety, Elsevier, vol. 223(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengshi Lu & Zuo‐Jun Max Shen, 2021. "A Review of Robust Operations Management under Model Uncertainty," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1927-1943, June.
    2. Wang, Yu & Zhang, Yu & Tang, Jiafu, 2019. "A distributionally robust optimization approach for surgery block allocation," European Journal of Operational Research, Elsevier, vol. 273(2), pages 740-753.
    3. Shin, Youngchul & Lee, Sangyoon & Moon, Ilkyeong, 2021. "Robust multiperiod inventory model with a new type of buy one get one promotion: “My Own Refrigerator”," Omega, Elsevier, vol. 99(C).
    4. Kimms, A. & Maiwald, M., 2018. "Bi-objective safe and resilient urban evacuation planning," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1122-1136.
    5. Yanıkoğlu, İhsan & Gorissen, Bram L. & den Hertog, Dick, 2019. "A survey of adjustable robust optimization," European Journal of Operational Research, Elsevier, vol. 277(3), pages 799-813.
    6. Kun Yang & Rachel A. Davidson & Humberto Vergara & Randall L. Kolar & Kendra M. Dresback & Brian A. Colle & Brian Blanton & Tricia Wachtendorf & Jennifer Trivedi & Linda K. Nozick, 2019. "Incorporating inland flooding into hurricane evacuation decision support modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 857-878, March.
    7. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    8. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    9. Sun, Hao & Yang, Jun & Yang, Chao, 2019. "A robust optimization approach to multi-interval location-inventory and recharging planning for electric vehicles," Omega, Elsevier, vol. 86(C), pages 59-75.
    10. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    11. Ben-Tal, A. & den Hertog, D. & Vial, J.P., 2012. "Deriving Robust Counterparts of Nonlinear Uncertain Inequalities," Discussion Paper 2012-053, Tilburg University, Center for Economic Research.
    12. Shunichi Ohmori, 2021. "A Predictive Prescription Using Minimum Volume k -Nearest Neighbor Enclosing Ellipsoid and Robust Optimization," Mathematics, MDPI, vol. 9(2), pages 1-16, January.
    13. Esposito Amideo, A. & Scaparra, M.P. & Kotiadis, K., 2019. "Optimising shelter location and evacuation routing operations: The critical issues," European Journal of Operational Research, Elsevier, vol. 279(2), pages 279-295.
    14. Wang, Tian & Deng, Shiming, 2019. "Multi-Period energy procurement policies for smart-grid communities with deferrable demand and supplementary uncertain power supplies," Omega, Elsevier, vol. 89(C), pages 212-226.
    15. Fanwen Meng & Jin Qi & Meilin Zhang & James Ang & Singfat Chu & Melvyn Sim, 2015. "A Robust Optimization Model for Managing Elective Admission in a Public Hospital," Operations Research, INFORMS, vol. 63(6), pages 1452-1467, December.
    16. Jiang, Sheng-Long & Peng, Gongzhuang & Bogle, I. David L. & Zheng, Zhong, 2022. "Two-stage robust optimization approach for flexible oxygen distribution under uncertainty in integrated iron and steel plants," Applied Energy, Elsevier, vol. 306(PB).
    17. Pruttipong Apivatanagul & Rachel Davidson & Linda Nozick, 2012. "Bi-level optimization for risk-based regional hurricane evacuation planning," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(2), pages 567-588, January.
    18. Viktoryia Buhayenko & Dick den Hertog, 2017. "Adjustable Robust Optimisation approach to optimise discounts for multi-period supply chain coordination under demand uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 55(22), pages 6801-6823, November.
    19. Goerigk, Marc & Deghdak, Kaouthar & Heßler, Philipp, 2014. "A comprehensive evacuation planning model and genetic solution algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 82-97.
    20. Shubhechyya Ghosal & Wolfram Wiesemann, 2020. "The Distributionally Robust Chance-Constrained Vehicle Routing Problem," Operations Research, INFORMS, vol. 68(3), pages 716-732, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:71:y:2020:i:c:s0038012118301472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.