IDEAS home Printed from https://ideas.repec.org/a/eee/soceco/v69y2017icp125-132.html
   My bibliography  Save this article

Serial correlation in National Football League play calling and its effects on outcomes

Author

Listed:
  • Emara, Noha
  • Owens, David
  • Smith, John
  • Wilmer, Lisa

Abstract

We investigate the strategic behavior of highly informed agents playing zero-sum games under highly incentivized conditions. We examine data from 3455 National Football League (NFL) games from the 2000 season through the 2012 season, and categorize each play as “rush” or a “pass.” We find that the pass-rush mix exhibits negative serial correlation: play types alternate more frequently than an independent stochastic process. This is a seemingly exploitable strategy, and we find that this serial correlation, according to two distinct measures, negatively affects play efficacy. Our analysis suggests that teams could profit from more clustered play selections, which switch play type less frequently. Our results are consistent with teams excessively switching play types in an effort to be perceived as unpredictable.

Suggested Citation

  • Emara, Noha & Owens, David & Smith, John & Wilmer, Lisa, 2017. "Serial correlation in National Football League play calling and its effects on outcomes," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 69(C), pages 125-132.
  • Handle: RePEc:eee:soceco:v:69:y:2017:i:c:p:125-132
    DOI: 10.1016/j.socec.2017.01.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2214804317300071
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.socec.2017.01.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pierre‐Carl Michaud & Konstantinos Tatsiramos, 2011. "Fertility and female employment dynamics in Europe: the effect of using alternative econometric modeling assumptions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(4), pages 641-668, June.
    2. Mookherjee Dilip & Sopher Barry, 1994. "Learning Behavior in an Experimental Matching Pennies Game," Games and Economic Behavior, Elsevier, vol. 7(1), pages 62-91, July.
    3. Jeffrey M. Wooldridge, 2005. "Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(1), pages 39-54, January.
    4. Bar-Eli, Michael & Azar, Ofer H. & Ritov, Ilana & Keidar-Levin, Yael & Schein, Galit, 2007. "Action bias among elite soccer goalkeepers: The case of penalty kicks," Journal of Economic Psychology, Elsevier, vol. 28(5), pages 606-621, October.
    5. Mookherjee, Dilip & Sopher, Barry, 1997. "Learning and Decision Costs in Experimental Constant Sum Games," Games and Economic Behavior, Elsevier, vol. 19(1), pages 97-132, April.
    6. Joseph P. McGarrity & Brian Linnen, 2010. "Pass or Run: An Empirical Test of the Matching Pennies Game Using Data from the National Football League," Southern Economic Journal, John Wiley & Sons, vol. 76(3), pages 791-810, January.
    7. Mark Walker & John Wooders, 2001. "Minimax Play at Wimbledon," American Economic Review, American Economic Association, vol. 91(5), pages 1521-1538, December.
    8. Matthew Rabin, 2002. "Inference by Believers in the Law of Small Numbers," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(3), pages 775-816.
    9. Steven Levitt & John List & David Reiley, 2010. "What happens in the field stays in the field: Professionals do not play minimax in laboratory experiments," Artefactual Field Experiments 00080, The Field Experiments Website.
    10. P.-A. Chiappori, 2002. "Testing Mixed-Strategy Equilibria When Players Are Heterogeneous: The Case of Penalty Kicks in Soccer," American Economic Review, American Economic Association, vol. 92(4), pages 1138-1151, September.
    11. Ofer Azar & Michael Bar-Eli, 2011. "Do soccer players play the mixed-strategy Nash equilibrium?," Applied Economics, Taylor & Francis Journals, vol. 43(25), pages 3591-3601.
    12. Jason Shachat & J. Todd Swarthout, 2004. "Do we detect and exploit mixed strategy play by opponents?," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 59(3), pages 359-373, July.
    13. Robert W. Rosenthal & Jason Shachat & Mark Walker, 2003. "Hide and seek in Arizona," International Journal of Game Theory, Springer;Game Theory Society, vol. 32(2), pages 273-293, December.
    14. Konstantinos Drakos & Panagiotis Th. Konstantinou, 2013. "Investment decisions in manufacturing: assessing the effects of real oil prices and their uncertainty," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(1), pages 151-165, January.
    15. Steven D. Levitt & John A. List & David H. Reiley, 2010. "What Happens in the Field Stays in the Field: Exploring Whether Professionals Play Minimax in Laboratory Experiments," Econometrica, Econometric Society, vol. 78(4), pages 1413-1434, July.
    16. Ignacio Palacios-Huerta & Oscar Volij, 2008. "Experientia Docet: Professionals Play Minimax in Laboratory Experiments," Econometrica, Econometric Society, vol. 76(1), pages 71-115, January.
    17. John Wooders, 2010. "Does Experience Teach? Professionals and Minimax Play in the Lab," Econometrica, Econometric Society, vol. 78(3), pages 1143-1154, May.
    18. Alamar Benjamin C, 2010. "Measuring Risk in NFL Playcalling," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(2), pages 1-9, April.
    19. Alamar Benjamin C, 2006. "The Passing Premium Puzzle," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 2(4), pages 1-10, October.
    20. Wiji Arulampalam & Mark B. Stewart, 2009. "Simplified Implementation of the Heckman Estimator of the Dynamic Probit Model and a Comparison with Alternative Estimators," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(5), pages 659-681, October.
    21. Shachat, Jason M., 2002. "Mixed Strategy Play and the Minimax Hypothesis," Journal of Economic Theory, Elsevier, vol. 104(1), pages 189-226, May.
    22. Rapoport, Amnon & Amaldoss, Wilfred, 2000. "Mixed strategies and iterative elimination of strongly dominated strategies: an experimental investigation of states of knowledge," Journal of Economic Behavior & Organization, Elsevier, vol. 42(4), pages 483-521, August.
    23. Geng, Sen & Peng, Yujia & Shachat, Jason & Zhong, Huizhen, 2015. "Adolescents, cognitive ability, and minimax play," Economics Letters, Elsevier, vol. 128(C), pages 54-58.
    24. Walker, Mark & Wooders, John & Amir, Rabah, 2011. "Equilibrium play in matches: Binary Markov games," Games and Economic Behavior, Elsevier, vol. 71(2), pages 487-502, March.
    25. Okano, Yoshitaka, 2013. "Minimax play by teams," Games and Economic Behavior, Elsevier, vol. 77(1), pages 168-180.
    26. Van Essen, Matt & Wooders, John, 2015. "Blind stealing: Experience and expertise in a mixed-strategy poker experiment," Games and Economic Behavior, Elsevier, vol. 91(C), pages 186-206.
    27. Spiliopoulos, Leonidas, 2012. "Pattern recognition and subjective belief learning in a repeated constant-sum game," Games and Economic Behavior, Elsevier, vol. 75(2), pages 921-935.
    28. Kenneth Kovash & Steven D. Levitt, 2009. "Professionals Do Not Play Minimax: Evidence from Major League Baseball and the National Football League," NBER Working Papers 15347, National Bureau of Economic Research, Inc.
    29. Brown, James N & Rosenthal, Robert W, 1990. "Testing the Minimax Hypothesis: A Re-examination of O'Neill's Game Experiment," Econometrica, Econometric Society, vol. 58(5), pages 1065-1081, September.
    30. Rapoport, Amnon & Amaldoss, Wilfred, 2004. "Mixed-strategy play in single-stage first-price all-pay auctions with symmetric players," Journal of Economic Behavior & Organization, Elsevier, vol. 54(4), pages 585-607, August.
    31. Binmore, Ken & Swierzbinski, Joe & Proulx, Chris, 2001. "Does Minimax Work? An Experimental Study," Economic Journal, Royal Economic Society, vol. 111(473), pages 445-464, July.
    32. repec:feb:artefa:0094 is not listed on IDEAS
    33. Ignacio Palacios-Huerta, 2003. "Professionals Play Minimax," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(2), pages 395-415.
    34. Ochs Jack, 1995. "Games with Unique, Mixed Strategy Equilibria: An Experimental Study," Games and Economic Behavior, Elsevier, vol. 10(1), pages 202-217, July.
    35. Rockerbie Duane W., 2008. "The Passing Premium Puzzle Revisited," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 4(2), pages 1-13, April.
    36. Luigi Buzzacchi & Stefano Pedrini, 2014. "Does player specialization predict player actions? Evidence from penalty kicks at FIFA World Cup and UEFA Euro Cup," Applied Economics, Taylor & Francis Journals, vol. 46(10), pages 1067-1080, April.
    37. Germán Coloma, 2007. "Penalty Kicks in Soccer," Journal of Sports Economics, , vol. 8(5), pages 530-545, October.
    38. Jacob Bundrick & Joseph McGarrity, 2014. "Strategic Play in the NFL’s Offensive Play Calling," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 20(3), pages 339-340, August.
    39. David Romer, 2006. "Do Firms Maximize? Evidence from Professional Football," Journal of Political Economy, University of Chicago Press, vol. 114(2), pages 340-365, April.
    40. Halpern, Joseph Y. & Pass, Rafael, 2015. "Algorithmic rationality: Game theory with costly computation," Journal of Economic Theory, Elsevier, vol. 156(C), pages 246-268.
    41. Dimitris Batzilis & Sonia Jaffe & Steven Levitt & John A. List & Jeffrey Picel, 2019. "Behavior in Strategic Settings: Evidence from a Million Rock-Paper-Scissors Games," Games, MDPI, vol. 10(2), pages 1-34, April.
    42. O'Neill, Barry, 1991. "Comments on Brown and Rosenthal's Reexamination [Testing the Minimax Hypothesis, A Reexamination of O'Neill's Game Experiment]," Econometrica, Econometric Society, vol. 59(2), pages 503-507, March.
    43. Rapoport, Amnon & Boebel, Richard B., 1992. "Mixed strategies in strictly competitive games: A further test of the minimax hypothesis," Games and Economic Behavior, Elsevier, vol. 4(2), pages 261-283, April.
    44. Shih-Hsun Hsu & Chen-Ying Huang & Cheng-Tao Tang, 2007. "Minimax Play at Wimbledon: Comment," American Economic Review, American Economic Association, vol. 97(1), pages 517-523, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jung S You, 2021. "Random Actions in Experimental Zero-Sum Games," Journal of Economics and Behavioral Studies, AMH International, vol. 13(1), pages 69-81.
    2. Jim Downey & Joseph McGarrity, 2019. "Pressure and the ability to randomize decision-making: The case of the pickoff play in Major League Baseball," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 47(3), pages 261-274, September.
    3. Heifetz, Aviad & Heller, Ruth & Ostreiher, Roni, 2021. "Do Arabian babblers play mixed strategies in a “volunteer’s dilemma”?," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 91(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emara, Noha & Owens, David & Smith, John & Wilmer, Lisa, 2014. "Minimax on the gridiron: Serial correlation and its effects on outcomes in the National Football League," MPRA Paper 58907, University Library of Munich, Germany.
    2. Sean Duffy & J. J. Naddeo & David Owens & John Smith, 2024. "Cognitive Load and Mixed Strategies: On Brains and Minimax," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 26(03), pages 1-34, September.
    3. Jung S You, 2021. "Random Actions in Experimental Zero-Sum Games," Journal of Economics and Behavioral Studies, AMH International, vol. 13(1), pages 69-81.
    4. Leonidas Spiliopoulos, 2018. "Randomization and serial dependence in professional tennis matches: Do strategic considerations, player rankings and match characteristics matter?," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 13(5), pages 413-427, September.
    5. repec:cup:judgdm:v:13:y:2018:i:5:p:413-427 is not listed on IDEAS
    6. Okano, Yoshitaka, 2013. "Minimax play by teams," Games and Economic Behavior, Elsevier, vol. 77(1), pages 168-180.
    7. Van Essen, Matt & Wooders, John, 2015. "Blind stealing: Experience and expertise in a mixed-strategy poker experiment," Games and Economic Behavior, Elsevier, vol. 91(C), pages 186-206.
    8. Ofer Azar & Michael Bar-Eli, 2011. "Do soccer players play the mixed-strategy Nash equilibrium?," Applied Economics, Taylor & Francis Journals, vol. 43(25), pages 3591-3601.
    9. Yoshitaka Okano, 2016. "Re-examination of team’s play in a mixed-strategy game experiment," Applied Economics Letters, Taylor & Francis Journals, vol. 23(8), pages 601-604, May.
    10. John Wooders, 2010. "Does Experience Teach? Professionals and Minimax Play in the Lab," Econometrica, Econometric Society, vol. 78(3), pages 1143-1154, May.
    11. Heifetz, Aviad & Heller, Ruth & Ostreiher, Roni, 2021. "Do Arabian babblers play mixed strategies in a “volunteer’s dilemma”?," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 91(C).
    12. Romain Gauriot & Lionel Page & John Wooders, 2016. "Nash at Wimbledon: Evidence from Half a Million Serves," QuBE Working Papers 046, QUT Business School.
    13. Spiliopoulos, Leonidas, 2013. "Beyond fictitious play beliefs: Incorporating pattern recognition and similarity matching," Games and Economic Behavior, Elsevier, vol. 81(C), pages 69-85.
    14. Romain Gauriot & Lionel Page & John Wooders, 2016. "Nash at Wimbledon: Evidence from Half a Million Serves," QuBE Working Papers 046, QUT Business School.
    15. Spiliopoulos, Leonidas, 2012. "Pattern recognition and subjective belief learning in a repeated constant-sum game," Games and Economic Behavior, Elsevier, vol. 75(2), pages 921-935.
    16. Steven D. Levitt & John A. List & David H. Reiley, 2010. "What Happens in the Field Stays in the Field: Exploring Whether Professionals Play Minimax in Laboratory Experiments," Econometrica, Econometric Society, vol. 78(4), pages 1413-1434, July.
    17. Kenneth Kovash & Steven D. Levitt, 2009. "Professionals Do Not Play Minimax: Evidence from Major League Baseball and the National Football League," NBER Working Papers 15347, National Bureau of Economic Research, Inc.
    18. Thomas Dohmen & Hendrik Sonnabend, 2018. "Further Field Evidence for Minimax Play," Journal of Sports Economics, , vol. 19(3), pages 371-388, April.
    19. Jason Shachat & J. Todd Swarthout & Lijia Wei, 2011. "Man versus Nash An experiment on the self-enforcing nature of mixed strategy equilibrium," Working Papers 1101, Xiamen Unversity, The Wang Yanan Institute for Studies in Economics, Finance and Economics Experimental Laboratory, revised 21 Feb 2011.
    20. Charles Noussair & Marc Willinger, 2011. "Mixed strategies in an unprofitable game: an experiment," Working Papers 11-19, LAMETA, Universtiy of Montpellier, revised Nov 2011.
    21. Spenkuch, Jörg, 2014. "Backward Induction in the Wild: Evidence from the U.S. Senate," MPRA Paper 58766, University Library of Munich, Germany.

    More about this item

    Keywords

    Serial correlation; Game theory; Mixed strategies; Matching pennies;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C93 - Mathematical and Quantitative Methods - - Design of Experiments - - - Field Experiments
    • D03 - Microeconomics - - General - - - Behavioral Microeconomics: Underlying Principles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceco:v:69:y:2017:i:c:p:125-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620175 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.