IDEAS home Printed from https://ideas.repec.org/a/eee/riibaf/v66y2023ics0275531923002040.html
   My bibliography  Save this article

Identification of high-frequency trading: A machine learning approach

Author

Listed:
  • Goudarzi, Mostafa
  • Bazzana, Flavio

Abstract

This study aims to develop a probabilistic model using machine learning techniques to identify high-frequency trading (HFT) based on order book data. The model enables precise intraday identifications, addressing the lack of a widely accepted framework for HFT identification and the inconsistencies arising from proxy indicators. Leveraging academic data, the model offers improved consistency and reproducibility for future HFT research. By incorporating fuzzy logic, the probabilistic model allows policymakers greater flexibility in shaping policies. The study utilises data from the BEDOFIH database of the French capital market and develops a robust classification model capable of accurately distinguishing HFT. Additionally, reverse engineering enhances the model’s interpretability by transforming it into an interpretable regression tree without compromising its predictability. This research contributes to advancing HFT research, providing valuable insights, and offering a transferable methodology for identifying HFT in diverse market contexts.

Suggested Citation

  • Goudarzi, Mostafa & Bazzana, Flavio, 2023. "Identification of high-frequency trading: A machine learning approach," Research in International Business and Finance, Elsevier, vol. 66(C).
  • Handle: RePEc:eee:riibaf:v:66:y:2023:i:c:s0275531923002040
    DOI: 10.1016/j.ribaf.2023.102078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0275531923002040
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ribaf.2023.102078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ekkehart Boehmer & Dan Li & Gideon Saar, 2018. "The Competitive Landscape of High-Frequency Trading Firms," The Review of Financial Studies, Society for Financial Studies, vol. 31(6), pages 2227-2276.
    2. Oguz Ersan & Cumhur Ekinci, 2016. "Algorithmic and high-frequency trading in Borsa Istanbul," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 16(4), pages 233-248, December.
    3. Bernales, Alejandro, 2019. "Make-take decisions under high-frequency trading competition," Journal of Financial Markets, Elsevier, vol. 45(C), pages 1-18.
    4. Bazzana, Flavio & Collini, Andrea, 2020. "How does HFT activity impact market volatility and the bid-ask spread after an exogenous shock? An empirical analysis on S&P 500 ETF," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    5. Jonathan Brogaard & Terrence Hendershott & Ryan Riordan, 2014. "High-Frequency Trading and Price Discovery," The Review of Financial Studies, Society for Financial Studies, vol. 27(8), pages 2267-2306.
    6. Benos, Evangelos & Sagade, Satchit, 2016. "Price discovery and the cross-section of high-frequency trading," Journal of Financial Markets, Elsevier, vol. 30(C), pages 54-77.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carè, Rosella & Cumming, Douglas, 2024. "Technology and automation in financial trading: A bibliometric review," Research in International Business and Finance, Elsevier, vol. 71(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ersan, Oguz & Simsir, Serif Aziz & Simsek, Koray D. & Hasan, Afan, 2021. "The speed of stock price adjustment to corporate announcements: Insights from Turkey," Emerging Markets Review, Elsevier, vol. 47(C).
    2. Ekinci, Cumhur & Ersan, Oğuz, 2022. "High-frequency trading and market quality: The case of a “slightly exposed” market," International Review of Financial Analysis, Elsevier, vol. 79(C).
    3. Breckenfelder, Johannes, 2024. "Competition among high-frequency traders and market quality," Journal of Economic Dynamics and Control, Elsevier, vol. 166(C).
    4. Bizzozero, Paolo & Flepp, Raphael & Franck, Egon, 2018. "The effect of fast trading on price discovery and efficiency: Evidence from a betting exchange," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 126-143.
    5. Adrian, Tobias & Capponi, Agostino & Fleming, Michael & Vogt, Erik & Zhang, Hongzhong, 2020. "Intraday market making with overnight inventory costs," Journal of Financial Markets, Elsevier, vol. 50(C).
    6. Roşu, Ioanid, 2019. "Fast and slow informed trading," Journal of Financial Markets, Elsevier, vol. 43(C), pages 1-30.
    7. Sánchez Serrano Antonio, 2020. "High-Frequency Trading and Systemic Risk: A Structured Review of Findings and Policies," Review of Economics, De Gruyter, vol. 71(3), pages 169-195, December.
    8. Bastian von Beschwitz & Donald B Keim & Massimo Massa, 2020. "First to “Read” the News: News Analytics and Algorithmic Trading," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 10(1), pages 122-178.
    9. Dodd, Olga & Frijns, Bart & Indriawan, Ivan & Pascual, Roberto, 2023. "US cross-listing and domestic high-frequency trading: Evidence from Canadian stocks," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 301-320.
    10. Kang, Jongho & Kang, Jangkoo & Kwon, Kyung Yoon, 2022. "Market versus limit orders of speculative high-frequency traders and price discovery," Research in International Business and Finance, Elsevier, vol. 63(C).
    11. Aggarwal, Nidhi & Panchapagesan, Venkatesh & Thomas, Susan, 2023. "When is the order-to-trade ratio fee effective?," Journal of Financial Markets, Elsevier, vol. 62(C).
    12. Brice Corgnet & Mark DeSantis & Christoph Siemroth, 2023. "Algorithmic Trading, Price Efficiency and Welfare: An Experimental Approach," Working Papers 2313, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    13. Zhou, Hao & Kalev, Petko S., 2019. "Algorithmic and high frequency trading in Asia-Pacific, now and the future," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 186-207.
    14. Bellia, Mario & Pelizzon, Loriana & Subrahmanyam, Marti & Uno, Jun & Yuferova, Darya, 2017. "Coming early to the party," SAFE Working Paper Series 182, Leibniz Institute for Financial Research SAFE.
      • Mario Bellia & Loriana Pelizzon & Marti G. Subrahmanyam & Jun Uno & Darya Yuferova, 2020. "Coming early to the party," Working Papers 2020:11, Department of Economics, University of Venice "Ca' Foscari".
    15. Breedon, Francis & Chen, Louisa & Ranaldo, Angelo & Vause, Nicholas, 2023. "Judgment day: Algorithmic trading around the Swiss franc cap removal," Journal of International Economics, Elsevier, vol. 140(C).
    16. Donald B. Keim & Massimo Massa & Bastian von Beschwitz, 2018. "First to \"Read\" the News: New Analytics and Algorithmic Trading," International Finance Discussion Papers 1233, Board of Governors of the Federal Reserve System (U.S.).
    17. Olgun, Onur & Ekinci, Cumhur & Arıkan, Ramazan, 2024. "The performance of selected high-frequency trading proxies: An application on Turkish index futures market," Finance Research Letters, Elsevier, vol. 65(C).
    18. Irtisam, Rasheek & Sokolov, Konstantin, 2023. "Do stock exchanges specialize? Evidence from the New Jersey transaction tax proposal," Journal of Banking & Finance, Elsevier, vol. 154(C).
    19. Watson, Ethan D. & Woods, Donovan, 2022. "Exchange introduction and market competition: The entrance of MEMX and MIAX," Global Finance Journal, Elsevier, vol. 54(C).
    20. Ekinci, Cumhur & Ersan, Oguz, 2018. "A new approach for detecting high-frequency trading from order and trade data," Finance Research Letters, Elsevier, vol. 24(C), pages 313-320.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:riibaf:v:66:y:2023:i:c:s0275531923002040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ribaf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.