IDEAS home Printed from https://ideas.repec.org/a/eee/finmar/v30y2016icp54-77.html
   My bibliography  Save this article

Price discovery and the cross-section of high-frequency trading

Author

Listed:
  • Benos, Evangelos
  • Sagade, Satchit

Abstract

We quantify the price discovery contributions of high-frequency traders (HFTs) in the United Kingdom equity market and examine how it varies in their cross-section. For this, we group individual HFTs according to their liquidity taking/making activity. HFTs contribute about 14% of all trade-induced information, with aggressive HFTs accounting for two-thirds of this contribution. This suggests that HFTs who pursue strategies that require the use of aggressive trades are most informed, as opposed to passive HFTs who more likely act as market-makers. However, information shares decline with the amount of aggressive volume, suggesting that these trading strategies are not scalable.

Suggested Citation

  • Benos, Evangelos & Sagade, Satchit, 2016. "Price discovery and the cross-section of high-frequency trading," Journal of Financial Markets, Elsevier, vol. 30(C), pages 54-77.
  • Handle: RePEc:eee:finmar:v:30:y:2016:i:c:p:54-77
    DOI: 10.1016/j.finmar.2016.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1386418116300672
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.finmar.2016.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hasbrouck, Joel, 1991. "Measuring the Information Content of Stock Trades," Journal of Finance, American Finance Association, vol. 46(1), pages 179-207, March.
    2. Benos, Evangelos & Brugler, James & Hjalmarsson, Erik & Zikes, Filip, 2017. "Interactions among High-Frequency Traders," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(4), pages 1375-1402, August.
    3. Thierry Foucault & Johan Hombert & Ioanid Roşu, 2016. "News Trading and Speed," Journal of Finance, American Finance Association, vol. 71(1), pages 335-382, February.
    4. Hendershott, Terrence & Moulton, Pamela C., 2011. "Automation, speed, and stock market quality: The NYSE's Hybrid," Journal of Financial Markets, Elsevier, vol. 14(4), pages 568-604, November.
    5. Lee, Charles M C & Ready, Mark J, 1991. "Inferring Trade Direction from Intraday Data," Journal of Finance, American Finance Association, vol. 46(2), pages 733-746, June.
    6. Hasbrouck, Joel, 1991. "The Summary Informativeness of Stock Trades: An Econometric Analysis," The Review of Financial Studies, Society for Financial Studies, vol. 4(3), pages 571-595.
    7. Robert A. Jarrow & Philip Protter, 2012. "A Dysfunctional Role Of High Frequency Trading In Electronic Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(03), pages 1-15.
    8. Andrew G. Haldane, 2012. "The Race to Zero," International Economic Association Series, in: Franklin Allen & Masahiko Aoki & Jean-Paul Fitoussi & Nobuhiro Kiyotaki & Roger Gordon & Joseph E. S (ed.), The Global Macro Economy and Finance, chapter 13, pages 245-270, Palgrave Macmillan.
    9. Menkveld, Albert J., 2013. "High frequency trading and the new market makers," Journal of Financial Markets, Elsevier, vol. 16(4), pages 712-740.
    10. Chordia, Tarun & Subrahmanyam, Avanidhar, 2004. "Order imbalance and individual stock returns: Theory and evidence," Journal of Financial Economics, Elsevier, vol. 72(3), pages 485-518, June.
    11. Jonathan Brogaard & Terrence Hendershott & Ryan Riordan, 2014. "High-Frequency Trading and Price Discovery," The Review of Financial Studies, Society for Financial Studies, vol. 27(8), pages 2267-2306.
    12. Michael Goldstein & Jonathan Brogaard & Terrence Hendershott & Stefan Hunt & Carla Ysusi, 2014. "High-Frequency Trading and the Execution Costs of Institutional Investors," The Financial Review, Eastern Finance Association, vol. 49(2), pages 345-369, May.
    13. Terrence Hendershott & Charles M. Jones & Albert J. Menkveld, 2011. "Does Algorithmic Trading Improve Liquidity?," Journal of Finance, American Finance Association, vol. 66(1), pages 1-33, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hendershott, Terrence & Menkveld, Albert J., 2014. "Price pressures," Journal of Financial Economics, Elsevier, vol. 114(3), pages 405-423.
    2. Zhou, Hao & Kalev, Petko S., 2019. "Algorithmic and high frequency trading in Asia-Pacific, now and the future," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 186-207.
    3. Gerig, Austin & Michayluk, David, 2017. "Automated liquidity provision," Pacific-Basin Finance Journal, Elsevier, vol. 45(C), pages 1-13.
    4. Breedon, Francis & Chen, Louisa & Ranaldo, Angelo & Vause, Nicholas, 2023. "Judgment day: Algorithmic trading around the Swiss franc cap removal," Journal of International Economics, Elsevier, vol. 140(C).
    5. Rzayev, Khaladdin & Ibikunle, Gbenga & Steffen, Tom, 2023. "The market quality implications of speed in cross-platform trading: evidence from Frankfurt-London microwave," LSE Research Online Documents on Economics 119989, London School of Economics and Political Science, LSE Library.
    6. Rzayev, Khaladdin & Ibikunle, Gbenga & Steffen, Tom, 2023. "The market quality implications of speed in cross-platform trading: Evidence from Frankfurt-London microwave," Journal of Financial Markets, Elsevier, vol. 66(C).
    7. Austin Gerig & David Michayluk, 2010. "Automated Liquidity Provision and the Demise of Traditional Market Making," Papers 1007.2352, arXiv.org.
    8. Zhou, Hao & Elliott, Robert J. & Kalev, Petko S., 2019. "Information or noise: What does algorithmic trading incorporate into the stock prices?," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 27-39.
    9. Sánchez Serrano Antonio, 2020. "High-Frequency Trading and Systemic Risk: A Structured Review of Findings and Policies," Review of Economics, De Gruyter, vol. 71(3), pages 169-195, December.
    10. Benos, Evangelos & Sagade, Satchit, 2012. "High-frequency trading behaviour and its impact on market quality: evidence from the UK equity market," Bank of England working papers 469, Bank of England.
    11. Kang, Jongho & Kang, Jangkoo & Kwon, Kyung Yoon, 2022. "Market versus limit orders of speculative high-frequency traders and price discovery," Research in International Business and Finance, Elsevier, vol. 63(C).
    12. Albert J. Menkveld & Marius A. Zoican, 2017. "Need for Speed? Exchange Latency and Liquidity," The Review of Financial Studies, Society for Financial Studies, vol. 30(4), pages 1188-1228.
    13. Chakrabarty, Bidisha & Pascual, Roberto & Shkilko, Andriy, 2015. "Evaluating trade classification algorithms: Bulk volume classification versus the tick rule and the Lee-Ready algorithm," Journal of Financial Markets, Elsevier, vol. 25(C), pages 52-79.
    14. Bizzozero, Paolo & Flepp, Raphael & Franck, Egon, 2018. "The effect of fast trading on price discovery and efficiency: Evidence from a betting exchange," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 126-143.
    15. Van Ness, Bonnie & Van Ness, Robert & Yildiz, Serhat, 2021. "Private information in trades, R2, and large stock price movements," Journal of Banking & Finance, Elsevier, vol. 131(C).
    16. Anagnostidis, Panagiotis & Fontaine, Patrice & Varsakelis, Christos, 2020. "Are high–frequency traders informed?," Economic Modelling, Elsevier, vol. 93(C), pages 365-383.
    17. Angerer, Martin & Neugebauer, Tibor & Shachat, Jason, 2023. "Arbitrage bots in experimental asset markets," Journal of Economic Behavior & Organization, Elsevier, vol. 206(C), pages 262-278.
    18. Schlepper, Kathi, 2016. "High-frequency trading in the Bund futures market," Discussion Papers 15/2016, Deutsche Bundesbank.
    19. Oliver Linton & Soheil Mahmoodzadeh, 2018. "Implications of High-Frequency Trading for Security Markets," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 237-259, August.
    20. Aït-Sahalia, Yacine & Brunetti, Celso, 2020. "High frequency traders and the price process," Journal of Econometrics, Elsevier, vol. 217(1), pages 20-45.

    More about this item

    Keywords

    High-frequency trading; Price discovery;

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finmar:v:30:y:2016:i:c:p:54-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/finmar .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.