IDEAS home Printed from https://ideas.repec.org/a/eee/riibaf/v66y2023ics0275531923001885.html
   My bibliography  Save this article

Large scale mean-variance strategies in the U.S. stock market

Author

Listed:
  • Pezzo, Luca
  • Wang, Lei
  • Zirek, Duygu

Abstract

We provide an extensive analysis of the profitability of large-scale Mean-Variance (MV) strategies in the US stock market. Implementing MV strategies has never been so rewarding as recently. MV strategies work best in periods where their parameters are more accurately estimated, making strategies more stable and able to adapt to changes in the investment opportunity set. Minimizing over costs is better than going for the classical approach, especially for strategies that target higher returns. This is because cost optimization puts a stabilizing economic bound on the weights, lowering downside risk and enabling better scaling, while driving execution costs toward zero.

Suggested Citation

  • Pezzo, Luca & Wang, Lei & Zirek, Duygu, 2023. "Large scale mean-variance strategies in the U.S. stock market," Research in International Business and Finance, Elsevier, vol. 66(C).
  • Handle: RePEc:eee:riibaf:v:66:y:2023:i:c:s0275531923001885
    DOI: 10.1016/j.ribaf.2023.102062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0275531923001885
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ribaf.2023.102062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    2. Olivier Ledoit & Michael Wolf, 2017. "Nonlinear Shrinkage of the Covariance Matrix for Portfolio Selection: Markowitz Meets Goldilocks," The Review of Financial Studies, Society for Financial Studies, vol. 30(12), pages 4349-4388.
    3. Chordia, Tarun & Subrahmanyam, Avanidhar & Tong, Qing, 2014. "Have capital market anomalies attenuated in the recent era of high liquidity and trading activity?," Journal of Accounting and Economics, Elsevier, vol. 58(1), pages 41-58.
    4. Robert Novy-Marx & Mihail Velikov, 2016. "A Taxonomy of Anomalies and Their Trading Costs," The Review of Financial Studies, Society for Financial Studies, vol. 29(1), pages 104-147.
    5. James J. Angel & Lawrence E. Harris & Chester S. Spatt, 2015. "Equity Trading in the 21st Century: An Update," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 1-39.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Filippou, Ilias & Maurer, Thomas A. & Pezzo, Luca & Taylor, Mark P., 2024. "Importance of transaction costs for asset allocation in foreign exchange markets," Journal of Financial Economics, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew Y. Chen & Mihail Velikov, 2020. "Zeroing in on the Expected Returns of Anomalies," Finance and Economics Discussion Series 2020-039, Board of Governors of the Federal Reserve System (U.S.).
    2. Raymond Kan & Xiaolu Wang & Guofu Zhou, 2022. "Optimal Portfolio Choice with Estimation Risk: No Risk-Free Asset Case," Management Science, INFORMS, vol. 68(3), pages 2047-2068, March.
    3. Cakici, Nusret & Zaremba, Adam, 2022. "Salience theory and the cross-section of stock returns: International and further evidence," Journal of Financial Economics, Elsevier, vol. 146(2), pages 689-725.
    4. Ammann, Manuel & Coqueret, Guillaume & Schade, Jan-Philip, 2016. "Characteristics-based portfolio choice with leverage constraints," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 23-37.
    5. Qi, Yue & Liao, Kezhi & Liu, Tongyang & Zhang, Yu, 2022. "Originating multiple-objective portfolio selection by counter-COVID measures and analytically instigating robust optimization by mean-parameterized nondominated paths," Operations Research Perspectives, Elsevier, vol. 9(C).
    6. Hiraki, Kazuhiro & Sun, Chuanping, 2022. "A toolkit for exploiting contemporaneous stock correlations," Journal of Empirical Finance, Elsevier, vol. 65(C), pages 99-124.
    7. Andrew Paskaramoorthy & Tim Gebbie & Terence van Zyl, 2021. "The efficient frontiers of mean-variance portfolio rules under distribution misspecification," Papers 2106.10491, arXiv.org, revised Jul 2021.
    8. Santos, André A.P. & Torrent, Hudson S., 2022. "Markowitz meets technical analysis: Building optimal portfolios by exploiting information in trend-following signals," Finance Research Letters, Elsevier, vol. 49(C).
    9. Doron Avramov & Si Cheng & Lior Metzker, 2023. "Machine Learning vs. Economic Restrictions: Evidence from Stock Return Predictability," Management Science, INFORMS, vol. 69(5), pages 2587-2619, May.
    10. Erdinc Akyildirim & Matteo Gambara & Josef Teichmann & Syang Zhou, 2023. "Randomized Signature Methods in Optimal Portfolio Selection," Papers 2312.16448, arXiv.org.
    11. Marie Brière & Ariane Szafarz, 2021. "When it rains, it pours: Multifactor asset management in good and bad times," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 44(3), pages 641-669, September.
    12. Gianluca De Nard & Olivier Ledoit & Michael Wolf, 2018. "Factor models for portfolio selection in large dimensions: the good, the better and the ugly," ECON - Working Papers 290, Department of Economics - University of Zurich, revised Dec 2018.
    13. Chen, Jia & Li, Degui & Linton, Oliver, 2019. "A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables," Journal of Econometrics, Elsevier, vol. 212(1), pages 155-176.
    14. Degenhardt, Thomas & Auer, Benjamin R., 2018. "The “Sell in May” effect: A review and new empirical evidence," The North American Journal of Economics and Finance, Elsevier, vol. 43(C), pages 169-205.
    15. Michael J. O'Neill & Geoffrey J. Warren, 2019. "Evaluating fund capacity: issues and methods," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 59(S1), pages 773-800, April.
    16. Tu, Xueyong & Li, Bin, 2024. "Robust portfolio selection with smart return prediction," Economic Modelling, Elsevier, vol. 135(C).
    17. Hafner, Christian M. & Wang, Linqi, 2024. "Dynamic portfolio selection with sector-specific regularization," Econometrics and Statistics, Elsevier, vol. 32(C), pages 17-33.
    18. Andrew Detzel & Jack Strauss, 2018. "Combination Return Forecasts and Portfolio Allocation with the Cross-Section of Book-to-Market Ratios [Illiquidity and stock returns: cross-section and time-series effects]," Review of Finance, European Finance Association, vol. 22(5), pages 1949-1973.
    19. Angelidis, Timotheos & Tessaromatis, Nikolaos, 2023. "The disappearing profitability of volatility-managed equity factors," Journal of Financial Markets, Elsevier, vol. 65(C).
    20. Diaz-Ruiz, Polux & Herrerias, Renata & Vasquez, Aurelio, 2020. "Anomalies in emerging markets: The case of Mexico," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).

    More about this item

    Keywords

    Mean-Variance; Market-timing; Estimation error; Transaction costs; Profitability;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D23 - Microeconomics - - Production and Organizations - - - Organizational Behavior; Transaction Costs; Property Rights
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:riibaf:v:66:y:2023:i:c:s0275531923001885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ribaf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.