IDEAS home Printed from https://ideas.repec.org/a/eee/riibaf/v53y2020ics0275531919309249.html
   My bibliography  Save this article

High-frequency trading and stock liquidity: An intraday analysis

Author

Listed:
  • Ben Ammar, Imen
  • Hellara, Slaheddine
  • Ghadhab, Imen

Abstract

This paper studies the impact of high-frequency trading (HFT) on intraday liquidity of CAC40 stocks listed on Euronext. Spreads display an intraday L-shaped pattern, while quoted depth follows an inverse pattern: low at the open and increasing towards the end of the trading day. When liquidity demand is particularly high, there is a high rate of order cancellations attributable to high-frequency traders who use frequent order cancellations to strategically manage their limit orders and close positions near the market close. Using the generalized method of moments estimator, we generate strong evidence that greater intensity of HFT is associated with lower spreads and higher depth. The positive effect of HFT on liquidity is due mainly to decreased adverse selection costs arising from asymmetric information among market participants.

Suggested Citation

  • Ben Ammar, Imen & Hellara, Slaheddine & Ghadhab, Imen, 2020. "High-frequency trading and stock liquidity: An intraday analysis," Research in International Business and Finance, Elsevier, vol. 53(C).
  • Handle: RePEc:eee:riibaf:v:53:y:2020:i:c:s0275531919309249
    DOI: 10.1016/j.ribaf.2020.101235
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0275531919309249
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ribaf.2020.101235?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Chung, Kee H. & Van Ness, Bonnie F. & Van Ness, Robert A., 1999. "Limit orders and the bid-ask spread," Journal of Financial Economics, Elsevier, vol. 53(2), pages 255-287, August.
    3. Roman Kozhan & Wing Wah Tham, 2012. "Execution Risk in High-Frequency Arbitrage," Management Science, INFORMS, vol. 58(11), pages 2131-2149, November.
    4. Biais, Bruno & Foucault, Thierry & Moinas, Sophie, 2015. "Equilibrium fast trading," Journal of Financial Economics, Elsevier, vol. 116(2), pages 292-313.
    5. Glosten, Lawrence R. & Harris, Lawrence E., 1988. "Estimating the components of the bid/ask spread," Journal of Financial Economics, Elsevier, vol. 21(1), pages 123-142, May.
    6. Lee, Charles M C & Mucklow, Belinda & Ready, Mark J, 1993. "Spreads, Depths, and the Impact of Earnings Information: An Intraday Analysis," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 345-374.
    7. Tarun Chordia & Richard Roll & Avanidhar Subrahmanyam, 2001. "Market Liquidity and Trading Activity," Journal of Finance, American Finance Association, vol. 56(2), pages 501-530, April.
    8. McInish, Thomas H & Wood, Robert A, 1992. "An Analysis of Intraday Patterns in Bid/Ask Spreads for NYSE Stocks," Journal of Finance, American Finance Association, vol. 47(2), pages 753-764, June.
    9. Hendershott, Terrence & Riordan, Ryan, 2013. "Algorithmic Trading and the Market for Liquidity," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(4), pages 1001-1024, August.
    10. Lesmond, David A., 2005. "Liquidity of emerging markets," Journal of Financial Economics, Elsevier, vol. 77(2), pages 411-452, August.
    11. Huang, Roger D. & Stoll, Hans R., 1996. "Dealer versus auction markets: A paired comparison of execution costs on NASDAQ and the NYSE," Journal of Financial Economics, Elsevier, vol. 41(3), pages 313-357, July.
    12. Brock, William A. & Kleidon, Allan W., 1992. "Periodic market closure and trading volume : A model of intraday bids and asks," Journal of Economic Dynamics and Control, Elsevier, vol. 16(3-4), pages 451-489.
    13. Kelejian, Harry H. & Mukerji, Purba, 2016. "Does high frequency algorithmic trading matter for non-AT investors?," Research in International Business and Finance, Elsevier, vol. 37(C), pages 78-92.
    14. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    15. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    16. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    17. Glosten, Lawrence R, 1994. "Is the Electronic Open Limit Order Book Inevitable?," Journal of Finance, American Finance Association, vol. 49(4), pages 1127-1161, September.
    18. Chelley-Steeley, Patricia & Park, Keebong, 2011. "Intraday patterns in London listed Exchange Traded Funds," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 244-251.
    19. Menkveld, Albert J., 2013. "High frequency trading and the new market makers," Journal of Financial Markets, Elsevier, vol. 16(4), pages 712-740.
    20. Jack Bao & Jun Pan, 2013. "Bond Illiquidity and Excess Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 26(12), pages 3068-3103.
    21. Lee, Charles M C & Ready, Mark J, 1991. "Inferring Trade Direction from Intraday Data," Journal of Finance, American Finance Association, vol. 46(2), pages 733-746, June.
    22. Anat R. Admati, Paul Pfleiderer, 1988. "A Theory of Intraday Patterns: Volume and Price Variability," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 3-40.
    23. Jonathan Brogaard & Terrence Hendershott & Ryan Riordan, 2014. "High-Frequency Trading and Price Discovery," The Review of Financial Studies, Society for Financial Studies, vol. 27(8), pages 2267-2306.
    24. Chan, K C & Christie, William G & Schultz, Paul H, 1995. "Market Structure and the Intraday Pattern of Bid-Ask Spreads for NASDAQ Securities," The Journal of Business, University of Chicago Press, vol. 68(1), pages 35-60, January.
    25. Enrique Moral-Benito, 2013. "Likelihood-Based Estimation of Dynamic Panels With Predetermined Regressors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(4), pages 451-472, October.
    26. Andrei A. Kirilenko & Andrew W. Lo, 2013. "Moore's Law versus Murphy's Law: Algorithmic Trading and Its Discontents," Journal of Economic Perspectives, American Economic Association, vol. 27(2), pages 51-72, Spring.
    27. Terrence Hendershott & Charles M. Jones & Albert J. Menkveld, 2011. "Does Algorithmic Trading Improve Liquidity?," Journal of Finance, American Finance Association, vol. 66(1), pages 1-33, February.
    28. Hasbrouck, Joel & Saar, Gideon, 2013. "Low-latency trading," Journal of Financial Markets, Elsevier, vol. 16(4), pages 646-679.
    29. Chan, Kalok & Hameed, Allaudeen & Kang, Wenjin, 2013. "Stock price synchronicity and liquidity," Journal of Financial Markets, Elsevier, vol. 16(3), pages 414-438.
    30. Wei, Jason & Zheng, Jinguo, 2010. "Trading activity and bid-ask spreads of individual equity options," Journal of Banking & Finance, Elsevier, vol. 34(12), pages 2897-2916, December.
    31. Cragg, John G. & Donald, Stephen G., 1993. "Testing Identifiability and Specification in Instrumental Variable Models," Econometric Theory, Cambridge University Press, vol. 9(2), pages 222-240, April.
    32. James Eaves & Jeffrey Williams, 2010. "Are Intraday Volume and Volatility U-Shaped After Accounting for Public Information?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 92(1), pages 212-227.
    33. Jonathan Brogaard & Björn Hagströmer & Lars Nordén & Ryan Riordan, 2015. "Trading Fast and Slow: Colocation and Liquidity," The Review of Financial Studies, Society for Financial Studies, vol. 28(12), pages 3407-3443.
    34. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    35. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    36. Tissaoui, Kais & Ftiti, Zied, 2016. "Liquidity, liquidity risk, and information flow: Lessons from an emerging market," Research in International Business and Finance, Elsevier, vol. 37(C), pages 28-48.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ho, Kung-Cheng & Yen, Huang-Ping & Lu, Canyi & Lee, Shih-Cheng, 2023. "Does information disclosure and transparency ranking system prevent the default risk of a firm?," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1089-1105.
    2. Vecchi, Edoardo & Berra, Gabriele & Albrecht, Steffen & Gagliardini, Patrick & Horenko, Illia, 2023. "Entropic approximate learning for financial decision-making in the small data regime," Research in International Business and Finance, Elsevier, vol. 65(C).
    3. Karkowska, Renata & Palczewski, Andrzej, 2023. "Does high-frequency trading actually improve market liquidity? A comparative study for selected models and measures," Research in International Business and Finance, Elsevier, vol. 64(C).
    4. Trinh, Hai Hong & Nguyen, Canh Phuc & Hao, Wei & Wongchoti, Udomsak, 2021. "Does stock liquidity affect bankruptcy risk? DID analysis from Vietnam," Pacific-Basin Finance Journal, Elsevier, vol. 69(C).
    5. Olgun, Onur & Ekinci, Cumhur & Arıkan, Ramazan, 2024. "The performance of selected high-frequency trading proxies: An application on Turkish index futures market," Finance Research Letters, Elsevier, vol. 65(C).
    6. Chan Kyu Paik & Jinhee Choi & Ivan Ureta Vaquero, 2024. "Algorithm-Based Low-Frequency Trading Using a Stochastic Oscillator and William%R: A Case Study on the U.S. and Korean Indices," JRFM, MDPI, vol. 17(3), pages 1-18, February.
    7. Kemme, David M. & McInish, Thomas H. & Zhang, Jiang, 2022. "Market fairness and efficiency: Evidence from the Tokyo Stock Exchange," Journal of Banking & Finance, Elsevier, vol. 134(C).
    8. Ekinci, Cumhur & Ersan, Oğuz, 2022. "High-frequency trading and market quality: The case of a “slightly exposed” market," International Review of Financial Analysis, Elsevier, vol. 79(C).
    9. Syamala, Sudhakara Reddy & Wadhwa, Kavita, 2020. "Trading performance and market efficiency: Evidence from algorithmic trading," Research in International Business and Finance, Elsevier, vol. 54(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jagjeev Dosanjh, 2017. "Exchange Initiatives and Market Efficiency: Evidence from the Australian Securities Exchange," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2017, January-A.
    2. repec:uts:finphd:34 is not listed on IDEAS
    3. Gerig, Austin & Michayluk, David, 2017. "Automated liquidity provision," Pacific-Basin Finance Journal, Elsevier, vol. 45(C), pages 1-13.
    4. Adrian, Tobias & Capponi, Agostino & Fleming, Michael & Vogt, Erik & Zhang, Hongzhong, 2020. "Intraday market making with overnight inventory costs," Journal of Financial Markets, Elsevier, vol. 50(C).
    5. Baldauf, Markus & Mollner, Joshua, 2022. "Fast traders make a quick buck: The role of speed in liquidity provision," Journal of Financial Markets, Elsevier, vol. 58(C).
    6. Vo, Minh T., 2007. "Limit orders and the intraday behavior of market liquidity: Evidence from the Toronto stock exchange," Global Finance Journal, Elsevier, vol. 17(3), pages 379-396, March.
    7. Shafiqur Rahman & Chandrasekhar Krishnamurti & Alice Lee, 2005. "The Dynamics of Security Trades, Quote Revisions, and Market Depths for Actively Traded Stocks," Review of Quantitative Finance and Accounting, Springer, vol. 25(2), pages 91-124, September.
    8. Zhou, Hao & Kalev, Petko S., 2019. "Algorithmic and high frequency trading in Asia-Pacific, now and the future," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 186-207.
    9. Chung, Kee H. & Van Ness, Bonnie F. & Van Ness, Robert A., 1999. "Limit orders and the bid-ask spread," Journal of Financial Economics, Elsevier, vol. 53(2), pages 255-287, August.
    10. Breedon, Francis & Chen, Louisa & Ranaldo, Angelo & Vause, Nicholas, 2023. "Judgment day: Algorithmic trading around the Swiss franc cap removal," Journal of International Economics, Elsevier, vol. 140(C).
    11. Vayanos, Dimitri & Wang, Jiang, 2013. "Market Liquidity—Theory and Empirical Evidence ," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1289-1361, Elsevier.
    12. Banerjee, Anirban & Roy, Prince, 2023. "High-frequency traders’ evolving role as market makers," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
    13. Hussain, Syed Mujahid & Ahmad, Nisar & Ahmed, Sheraz, 2023. "Applications of high-frequency data in finance: A bibliometric literature review," International Review of Financial Analysis, Elsevier, vol. 89(C).
    14. Pascual, Roberto, 2000. "Adverse selection costs, trading activity and liquidity in the NYSE: an empirical analysis in a dynamic context," UC3M Working papers. Economics 7276, Universidad Carlos III de Madrid. Departamento de Economía.
    15. Rzayev, Khaladdin & Ibikunle, Gbenga & Steffen, Tom, 2023. "The market quality implications of speed in cross-platform trading: Evidence from Frankfurt-London microwave," Journal of Financial Markets, Elsevier, vol. 66(C).
    16. Pascual, Roberto & Escribano, Alvaro & Tapia, Mikel, 2004. "Adverse selection costs, trading activity and price discovery in the NYSE: An empirical analysis," Journal of Banking & Finance, Elsevier, vol. 28(1), pages 107-128, January.
    17. Bongaerts, Dion & Achter, Mark Van, 2021. "Competition among liquidity providers with access to high-frequency trading technology," Journal of Financial Economics, Elsevier, vol. 140(1), pages 220-249.
    18. Craig W. Holden & Stacey Jacobsen & Avanidhar Subrahmanyam, 2014. "The Empirical Analysis of Liquidity," Foundations and Trends(R) in Finance, now publishers, vol. 8(4), pages 263-365, December.
    19. Hatheway, Frank & Kwan, Amy & Zheng, Hui, 2017. "An Empirical Analysis of Market Segmentation on U.S. Equity Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(6), pages 2399-2427, December.
    20. Pham, Manh Cuong & Anderson, Heather Margot & Duong, Huu Nhan & Lajbcygier, Paul, 2020. "The effects of trade size and market depth on immediate price impact in a limit order book market," Journal of Economic Dynamics and Control, Elsevier, vol. 120(C).
    21. Krishnan, R. & Mishra, Vinod, 2013. "Intraday liquidity patterns in Indian stock market," Journal of Asian Economics, Elsevier, vol. 28(C), pages 99-114.

    More about this item

    Keywords

    High-frequency trading; Algorithmic trading; Market microstructure; Intraday liquidity;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G19 - Financial Economics - - General Financial Markets - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:riibaf:v:53:y:2020:i:c:s0275531919309249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ribaf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.