IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v91y2024icp316-331.html
   My bibliography  Save this article

Together in bad times? The effect of COVID-19 on inflation spillovers in China

Author

Listed:
  • Xu, Yingying
  • Lien, Donald

Abstract

This study estimates the cross-category inflation spillovers of consumption markets in China in the time-frequency domain, and evaluates the impact of the COVID-19 pandemic on the connectedness. Using the daily internet Consumer Price Index (iCPI), we measure the dynamic inflation connectedness among eight consumption categories in different frequency bands. We find, in the aftermath of the pandemic, inflation rates in eight consumption categories show significant changes. When China was in the active control period from January 2020 to April 2020, the overall connectedness of all frequency bands increases dramatically, but fluctuates widely in the normal control period since April 2020. Further research finds that the fear indexes for COVID in China and globally increase the overall connectedness in the high frequency band, thus indicating that prices tend to move together in bad times of the pandemic in the short-term. The fear for COVID in China and globally increases spillovers received and transmitted at the high frequency in most categories, with the exception of transportation and communication, where the spillovers are reduced. Nevertheless, in the medium-term and long-term, the impacts of the pandemic on directional spillovers show significant heterogeneity across categories. Compared with the fear for the COVID-19 in China, the fear for the global pandemic generates a stronger impact on inflation spillovers. Overall, pandemic-induced shocks have immediate and persistent impacts on cross-category inflation spillovers.

Suggested Citation

  • Xu, Yingying & Lien, Donald, 2024. "Together in bad times? The effect of COVID-19 on inflation spillovers in China," International Review of Economics & Finance, Elsevier, vol. 91(C), pages 316-331.
  • Handle: RePEc:eee:reveco:v:91:y:2024:i:c:p:316-331
    DOI: 10.1016/j.iref.2024.01.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056024000157
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.iref.2024.01.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barthélémy Bonadio & Andreas M Fischer & Philip Sauré, 2020. "The Speed of Exchange Rate Pass-Through," Journal of the European Economic Association, European Economic Association, vol. 18(1), pages 506-538.
    2. Salisu, Afees A. & Akanni, Lateef & Raheem, Ibrahim, 2020. "The COVID-19 global fear index and the predictability of commodity price returns," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    3. Antonakakis, Nikolaos & Cunado, Juncal & Filis, George & Gabauer, David & Perez de Gracia, Fernando, 2018. "Oil volatility, oil and gas firms and portfolio diversification," Energy Economics, Elsevier, vol. 70(C), pages 499-515.
    4. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    5. Jozef Baruník & Tomáš Křehlík, 2018. "Measuring the Frequency Dynamics of Financial Connectedness and Systemic Risk," Journal of Financial Econometrics, Oxford University Press, vol. 16(2), pages 271-296.
    6. Zhi Su & Xuanye Cai & You Wu, 2023. "Exchange rates forecasting and trend analysis after the COVID-19 outbreak: new evidence from interpretable machine learning," Applied Economics Letters, Taylor & Francis Journals, vol. 30(15), pages 2052-2059, September.
    7. Tiwari, Aviral Kumar & Nasreen, Samia & Shahbaz, Muhammad & Hammoudeh, Shawkat, 2020. "Time-frequency causality and connectedness between international prices of energy, food, industry, agriculture and metals," Energy Economics, Elsevier, vol. 85(C).
    8. Choi, Sangyup & Furceri, Davide & Loungani, Prakash & Mishra, Saurabh & Poplawski-Ribeiro, Marcos, 2018. "Oil prices and inflation dynamics: Evidence from advanced and developing economies," Journal of International Money and Finance, Elsevier, vol. 82(C), pages 71-96.
    9. Zhang, Dayong & Hu, Min & Ji, Qiang, 2020. "Financial markets under the global pandemic of COVID-19," Finance Research Letters, Elsevier, vol. 36(C).
    10. Xu, Yingying & Lien, Donald, 2020. "Dynamic exchange rate dependences: The effect of the U.S.-China trade war," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 68(C).
    11. Malik, Farooq & Umar, Zaghum, 2019. "Dynamic connectedness of oil price shocks and exchange rates," Energy Economics, Elsevier, vol. 84(C).
    12. Daron Acemoglu & Ufuk Akcigit & William Kerr, 2016. "Networks and the Macroeconomy: An Empirical Exploration," NBER Macroeconomics Annual, University of Chicago Press, vol. 30(1), pages 273-335.
    13. Zhang, Dayong & Broadstock, David C., 2020. "Global financial crisis and rising connectedness in the international commodity markets," International Review of Financial Analysis, Elsevier, vol. 68(C).
    14. Marais, E. & Bates, S., 2006. "An empirical study to identify shift contagion during the Asian crisis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 16(5), pages 468-479, December.
    15. Xu, Yingying, 2021. "Risk spillover from energy market uncertainties to the Chinese carbon market," Pacific-Basin Finance Journal, Elsevier, vol. 67(C).
    16. Armantier, Olivier & Koşar, Gizem & Pomerantz, Rachel & Skandalis, Daphné & Smith, Kyle & Topa, Giorgio & van der Klaauw, Wilbert, 2021. "How economic crises affect inflation beliefs: Evidence from the Covid-19 pandemic," Journal of Economic Behavior & Organization, Elsevier, vol. 189(C), pages 443-469.
    17. Santiago E. Alvarez & Sarah M. Lein, 2020. "Tracking inflation on a daily basis," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 156(1), pages 1-13, December.
    18. Jesse LaBelle & Ana Maria Santacreu, 2022. "Global Supply Chain Disruptions and Inflation During the COVID-19 Pandemic," Review, Federal Reserve Bank of St. Louis, vol. 104(2), pages 78-91.
    19. Lin, Boqiang & Su, Tong, 2021. "Does COVID-19 open a Pandora's box of changing the connectedness in energy commodities?," Research in International Business and Finance, Elsevier, vol. 56(C).
    20. repec:dau:papers:123456789/272 is not listed on IDEAS
    21. Umar, Zaghum & Nasreen, Samia & Solarin, Sakiru Adebola & Tiwari, Aviral Kumar, 2019. "Exploring the time and frequency domain connectedness of oil prices and metal prices," Resources Policy, Elsevier, vol. 64(C).
    22. Adam Hale Shapiro, 2020. "Monitoring the Inflationary Effects of COVID-19," FRBSF Economic Letter, Federal Reserve Bank of San Francisco, vol. 2020(24), pages 01-06, August.
    23. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    24. Goodell, John W., 2020. "COVID-19 and finance: Agendas for future research," Finance Research Letters, Elsevier, vol. 35(C).
    25. Caporin, Massimiliano & Naeem, Muhammad Abubakr & Arif, Muhammad & Hasan, Mudassar & Vo, Xuan Vinh & Hussain Shahzad, Syed Jawad, 2021. "Asymmetric and time-frequency spillovers among commodities using high-frequency data," Resources Policy, Elsevier, vol. 70(C).
    26. Pascal Seiler, 2020. "Weighting bias and inflation in the time of COVID-19: evidence from Swiss transaction data," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 156(1), pages 1-11, December.
    27. Tsutomu Watanabe, 2020. "The Responses of Consumption and Prices in Japan to the COVID-19 Crisis and the Tohoku Earthquake," Working Papers on Central Bank Communication 020, University of Tokyo, Graduate School of Economics.
    28. Wu, You & Ren, Wenting & Wan, Jieru & Liu, Xiaoxue, 2023. "Time-frequency volatility connectedness between fossil energy and agricultural commodities: Comparing the COVID-19 pandemic with the Russia-Ukraine conflict," Finance Research Letters, Elsevier, vol. 55(PA).
    29. Alberto Cavallo, 2024. "Inflation with Covid Consumption Baskets," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 72(2), pages 902-917, June.
    30. O’Brien, Derry & Dumoncel, Clémence & Gonçalves, Eduardo, 2021. "The role of demand and supply factors in HICP inflation during the COVID-19 pandemic – a disaggregated perspective," Economic Bulletin Articles, European Central Bank, vol. 1.
    31. Adam Hale Shapiro, 2020. "A Simple Framework to Monitor Inflation," Working Paper Series 2020-29, Federal Reserve Bank of San Francisco.
    32. Xu, Yingying & Lien, Donald, 2022. "Assessing the impact of COVID-19 on price Co-movements in China," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    33. Kantur, Zeynep & Özcan, Gülserim, 2021. "What pandemic inflation tells: Old habits die hard," Economics Letters, Elsevier, vol. 204(C).
    34. Xiangcai Meng, 2018. "Does Agricultural Commodity Price Co-move with Oil Price in the Time-Frequency Space? Evidence from the Republic of Korea," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 125-133.
    35. Ferrer, Román & Shahzad, Syed Jawad Hussain & López, Raquel & Jareño, Francisco, 2018. "Time and frequency dynamics of connectedness between renewable energy stocks and crude oil prices," Energy Economics, Elsevier, vol. 76(C), pages 1-20.
    36. Kang, Sang Hoon & Tiwari, Aviral Kumar & Albulescu, Claudiu Tiberiu & Yoon, Seong-Min, 2019. "Exploring the time-frequency connectedness and network among crude oil and agriculture commodities V1," Energy Economics, Elsevier, vol. 84(C).
    37. Simon H. Kwan & Thomas M. Mertens, 2020. "Market Assessment of COVID-19," FRBSF Economic Letter, Federal Reserve Bank of San Francisco, vol. 2020(14), pages 1-5, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Yingying & Shao, Xuefeng & Tanasescu, Cristina, 2024. "How are artificial intelligence, carbon market, and energy sector connected? A systematic analysis of time-frequency spillovers," Energy Economics, Elsevier, vol. 132(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farid, Saqib & Naeem, Muhammad Abubakr & Paltrinieri, Andrea & Nepal, Rabindra, 2022. "Impact of COVID-19 on the quantile connectedness between energy, metals and agriculture commodities," Energy Economics, Elsevier, vol. 109(C).
    2. Xu, Yingying & Lien, Donald, 2022. "Assessing the impact of COVID-19 on price Co-movements in China," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    3. Umar, Zaghum & Jareño, Francisco & Escribano, Ana, 2021. "Oil price shocks and the return and volatility spillover between industrial and precious metals," Energy Economics, Elsevier, vol. 99(C).
    4. Cui, Jinxin & Goh, Mark & Li, Binlin & Zou, Huiwen, 2021. "Dynamic dependence and risk connectedness among oil and stock markets: New evidence from time-frequency domain perspectives," Energy, Elsevier, vol. 216(C).
    5. Zhou, Xiaoran & Enilov, Martin & Parhi, Mamata, 2024. "Does oil spin the commodity wheel? Quantile connectedness with a common factor error structure across energy and agricultural markets," Energy Economics, Elsevier, vol. 132(C).
    6. Kočenda, Evžen & Moravcová, Michala, 2024. "Frequency volatility connectedness and portfolio hedging of U.S. energy commodities," Research in International Business and Finance, Elsevier, vol. 69(C).
    7. Cui Jinxin & Zou Huiwen, 2020. "Connectedness Among Economic Policy Uncertainties: Evidence from the Time and Frequency Domain Perspectives," Journal of Systems Science and Information, De Gruyter, vol. 8(5), pages 401-433, October.
    8. Tiwari, Aviral Kumar & Aikins Abakah, Emmanuel Joel & Doğan, Buhari & Adekoya, Oluwasegun B. & Wohar, Mark, 2024. "Asymmetric spillover effects in energy markets," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 470-502.
    9. Yarovaya, Larisa & Brzeszczyński, Janusz & Goodell, John W. & Lucey, Brian & Lau, Chi Keung Marco, 2022. "Rethinking financial contagion: Information transmission mechanism during the COVID-19 pandemic," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    10. Cui, Jinxin & Maghyereh, Aktham, 2023. "Higher-order moment risk connectedness and optimal investment strategies between international oil and commodity futures markets: Insights from the COVID-19 pandemic and Russia-Ukraine conflict," International Review of Financial Analysis, Elsevier, vol. 86(C).
    11. Lovcha, Yuliya & Perez-Laborda, Alejandro, 2022. "Long-memory and volatility spillovers across petroleum futures," Energy, Elsevier, vol. 243(C).
    12. Alomari, Mohammad & Mensi, Walid & Vo, Xuan Vinh & Kang, Sang Hoon, 2022. "Extreme return spillovers and connectedness between crude oil and precious metals futures markets: Implications for portfolio management," Resources Policy, Elsevier, vol. 79(C).
    13. Wei, Yu & Zhang, Jiahao & Bai, Lan & Wang, Yizhi, 2023. "Connectedness among El Niño-Southern Oscillation, carbon emission allowance, crude oil and renewable energy stock markets: Time- and frequency-domain evidence based on TVP-VAR model," Renewable Energy, Elsevier, vol. 202(C), pages 289-309.
    14. Billah, Mabruk & Karim, Sitara & Naeem, Muhammad Abubakr & Vigne, Samuel A., 2022. "Return and volatility spillovers between energy and BRIC markets: Evidence from quantile connectedness," Research in International Business and Finance, Elsevier, vol. 62(C).
    15. Adekoya, Oluwasegun B. & Oliyide, Johnson A., 2021. "How COVID-19 drives connectedness among commodity and financial markets: Evidence from TVP-VAR and causality-in-quantiles techniques," Resources Policy, Elsevier, vol. 70(C).
    16. Bouri, Elie & Lei, Xiaojie & Xu, Yahua & Zhang, Hongwei, 2023. "Connectedness in implied higher-order moments of precious metals and energy markets," Energy, Elsevier, vol. 263(PB).
    17. Amar, Amine Ben & Goutte, Stéphane & Isleimeyyeh, Mohammad & Benkraiem, Ramzi, 2022. "Commodity markets dynamics: What do cross-commodities over different nearest-to-maturities tell us?," International Review of Financial Analysis, Elsevier, vol. 82(C).
    18. Umar, Zaghum & Manel, Youssef & Riaz, Yasir & Gubareva, Mariya, 2021. "Return and volatility transmission between emerging markets and US debt throughout the pandemic crisis," Pacific-Basin Finance Journal, Elsevier, vol. 67(C).
    19. Balcilar, Mehmet & Gabauer, David & Umar, Zaghum, 2021. "Crude Oil futures contracts and commodity markets: New evidence from a TVP-VAR extended joint connectedness approach," Resources Policy, Elsevier, vol. 73(C).
    20. Wei, Yu & Wang, Yizhi & Vigne, Samuel A. & Ma, Zhenyu, 2023. "Alarming contagion effects: The dangerous ripple effect of extreme price spillovers across crude oil, carbon emission allowance, and agriculture futures markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).

    More about this item

    Keywords

    Connectedness; COVID-19; Inflation; Spillover; Frequency;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • F30 - International Economics - - International Finance - - - General
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:91:y:2024:i:c:p:316-331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.