Forecasting crude oil prices: A reduced-rank approach
Author
Abstract
Suggested Citation
DOI: 10.1016/j.iref.2023.07.001
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Barbara Rossi & Atsushi Inoue, 2012.
"Out-of-Sample Forecast Tests Robust to the Choice of Window Size,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
- Atsushi Inoue & Barbara Rossi, 2011. "Out-of-sample forecast tests robust to the choice of window size," Working Papers 11-31, Federal Reserve Bank of Philadelphia.
- Barbara Rossi & Atsushi Inoue, 2012. "Out-of-sample forecast tests robust to the choice of window size," Economics Working Papers 1404, Department of Economics and Business, Universitat Pompeu Fabra.
- Rossi, Barbara & Inoue, Atsushi, 2011. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," CEPR Discussion Papers 8542, C.E.P.R. Discussion Papers.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bai, Yun & Deng, Shuyun & Pu, Ziqiang & Li, Chuan, 2024. "Carbon price forecasting using leaky integrator echo state networks with the framework of decomposition-reconstruction-integration," Energy, Elsevier, vol. 305(C).
- Guan, Keqin & Gong, Xu, 2023. "A new hybrid deep learning model for monthly oil prices forecasting," Energy Economics, Elsevier, vol. 128(C).
- Yin, Linfei & Zheng, Da, 2024. "Decomposition prediction fractional-order PID reinforcement learning for short-term smart generation control of integrated energy systems," Applied Energy, Elsevier, vol. 355(C).
- Lahmiri, Salim, 2024. "Fossil energy market price prediction by using machine learning with optimal hyper-parameters: A comparative study," Resources Policy, Elsevier, vol. 92(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- João C. Claudio & Katja Heinisch & Oliver Holtemöller, 2020.
"Nowcasting East German GDP growth: a MIDAS approach,"
Empirical Economics, Springer, vol. 58(1), pages 29-54, January.
- Claudio, João C. & Heinisch, Katja & Holtemöller, Oliver, 2019. "Nowcasting East German GDP growth: A MIDAS approach," IWH Discussion Papers 24/2019, Halle Institute for Economic Research (IWH).
- Chen, Jian & Jiang, Fuwei & Liu, Yangshu & Tu, Jun, 2017. "International volatility risk and Chinese stock return predictability," Journal of International Money and Finance, Elsevier, vol. 70(C), pages 183-203.
- Barbara Rossi, 2013.
"Exchange Rate Predictability,"
Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
- Rossi, Barbara, 2013. "Exchange Rate Predictability," CEPR Discussion Papers 9575, C.E.P.R. Discussion Papers.
- Barbara Rossi, 2013. "Exchange rate predictability," Economics Working Papers 1369, Department of Economics and Business, Universitat Pompeu Fabra.
- Barbara Rossi, 2013. "Exchange Rate Predictability," Working Papers 690, Barcelona School of Economics.
- Lu Wang & Feng Ma & Guoshan Liu, 2020. "Forecasting stock volatility in the presence of extreme shocks: Short‐term and long‐term effects," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 797-810, August.
- Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
- Norman R. Swanson & Weiqi Xiong, 2018.
"Big data analytics in economics: What have we learned so far, and where should we go from here?,"
Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
- Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics, Canadian Economics Association, vol. 51(3), pages 695-746, August.
- Mei, Dexiang & Ma, Feng & Liao, Yin & Wang, Lu, 2020. "Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models," Energy Economics, Elsevier, vol. 86(C).
- Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
- Liang, Chao & Xia, Zhenglan & Lai, Xiaodong & Wang, Lu, 2022. "Natural gas volatility prediction: Fresh evidence from extreme weather and extended GARCH-MIDAS-ES model," Energy Economics, Elsevier, vol. 116(C).
- Chao Liang & Yaojie Zhang & Xiafei Li & Feng Ma, 2022. "Which predictor is more predictive for Bitcoin volatility? And why?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1947-1961, April.
- Barbara Rossi & Tatevik Sekhposyan, 2016.
"Forecast Rationality Tests in the Presence of Instabilities, with Applications to Federal Reserve and Survey Forecasts,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(3), pages 507-532, April.
- Barbara Rossi & Tatevik Sekhposyan, 2014. "Forecast rationality tests in the presence of instabilities, with applications to Federal Reserve and survey forecasts," Economics Working Papers 1426, Department of Economics and Business, Universitat Pompeu Fabra, revised Nov 2014.
- Rossi, Barbara & Sekhposyan, Tatevik, 2016. "Forecast Rationality Tests in the Presence of Instabilities, With Applications to Federal Reserve and Survey Forecasts," CEPR Discussion Papers 11391, C.E.P.R. Discussion Papers.
- Barbara Rossi & Tatevik Sekhposyany, 2014. "Forecast Rationality Tests in the Presence of Instabilities, With Applications to Federal Reserve and Survey Forecasts," Working Papers 765, Barcelona School of Economics.
- Rossi, Barbara, 2013.
"Advances in Forecasting under Instability,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324,
Elsevier.
- Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
- Reikard, Gordon & Haupt, Sue Ellen & Jensen, Tara, 2017. "Forecasting ground-level irradiance over short horizons: Time series, meteorological, and time-varying parameter models," Renewable Energy, Elsevier, vol. 112(C), pages 474-485.
- Steven Y. K. Wong & Jennifer Chan & Lamiae Azizi & Richard Y. D. Xu, 2020. "Time-varying neural network for stock return prediction," Papers 2003.02515, arXiv.org, revised Jan 2021.
- Li, Tao & Ma, Feng & Zhang, Xuehua & Zhang, Yaojie, 2020. "Economic policy uncertainty and the Chinese stock market volatility: Novel evidence," Economic Modelling, Elsevier, vol. 87(C), pages 24-33.
- Joseph Agyapong, 2021. "Application of Taylor Rule Fundamentals in Forecasting Exchange Rates," Economies, MDPI, vol. 9(2), pages 1-27, June.
- Peter Reinhard Hansen & Allan Timmermann, 2015.
"Equivalence Between Out‐of‐Sample Forecast Comparisons and Wald Statistics,"
Econometrica, Econometric Society, vol. 83, pages 2485-2505, November.
- Peter Reinhard Hansen & Allan Timmermann, 2012. "Equivalence Between Out-of-Sample Forecast Comparisons and Wald Statistics," Economics Working Papers ECO2012/24, European University Institute.
- Peter Reinhard Hansen & Allan Timmermann, 2012. "Equivalence Between Out-of-Sample Forecast Comparisons and Wald Statistics," CREATES Research Papers 2012-45, Department of Economics and Business Economics, Aarhus University.
- Raffaella Giacomini & Barbara Rossi, 2015.
"Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models,"
Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.
- Raffaella Giacomini & Barbara Rossi, 2014. "Forecasting in nonstationary environments: What works and what doesn't in reduced-form and structural models," Economics Working Papers 1476, Department of Economics and Business, Universitat Pompeu Fabra.
- Raffaella Giacomini & Barbara Rossi, 2014. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Working Papers 819, Barcelona School of Economics.
- Stephen G. Hall & George S. Tavlas & Yongli Wang, 2023.
"Forecasting inflation: The use of dynamic factor analysis and nonlinear combinations,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(3), pages 514-529, April.
- Stephen G. Hall & George S. Tavlas & Yongli Wang, 2022. "Forecasting Inflation: The Use of Dynamic Factor Analysis and Nonlinear Combinations," Discussion Papers 22-12, Department of Economics, University of Birmingham.
- Stephen G. Hall & George S. Tavlas & Yongli Wang, 2023. "Forecasting inflation: the use of dynamic factor analysis and nonlinear combinations," Working Papers 314, Bank of Greece.
- Firmin Doko Tchatoka & Qazi Haque, 2023.
"On bootstrapping tests of equal forecast accuracy for nested models,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1844-1864, November.
- Firmin Doko Tchatoka & Qazi Haque, 2020. "On bootstrapping tests of equal forecast accuracy for nested models," Economics Discussion / Working Papers 20-06, The University of Western Australia, Department of Economics.
- Firmin Doko Tchatoka & Qazi Haque, 2020. "On bootstrapping tests of equal forecast accuracy for nested models," School of Economics and Public Policy Working Papers 2020-03, University of Adelaide, School of Economics and Public Policy.
- Firmin Doko Tchatoka & Qazi Haque, 2020. "On bootstrapping tests of equal forecast accuracy for nested models," CAMA Working Papers 2020-27, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
More about this item
Keywords
Forecasting; Crude oil; Reduced-rank approach; Technical indicators; Loadings;All these keywords.
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:88:y:2023:i:c:p:698-711. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.