IDEAS home Printed from https://ideas.repec.org/a/eee/retrec/v89y2021ics0739885921000044.html
   My bibliography  Save this article

Using multivariate adaptive regression splining (MARS) to identify factors affecting the performance of dock-based bikesharing: The case of Chicago’s Divvy system

Author

Listed:
  • Smith, C. Scott
  • Schwieterman, Joseph P.

Abstract

This study explores factors contributing to the uneven success of past expansions of dock-based public bikesharing systems, in which middle- and - higher-income neighborhoods have tended to benefit considerably more than poorer neighborhoods. After a review of the differing performance of the three phases of expansion by Chicago's Divvy bikeshare system, this study uses multivariate adaptive regression splining (MARS) to select among more than 100 community- and station-level factors to explain variations in Divvy system usage at the station level. MARS demonstrates that neighborhood racial and ethnic diversity, proportion of condominium units, and job accessibility to public transit are strongly and positively correlated with total annual station trips, whereas percentage unemployed, average distance to Divvy stations, and percentage of residential foreclosures are negatively correlated. Model results are compared with those of earlier studies to foster insights into ways to more accurately predict the use of bikesharing systems across urban neighborhoods.

Suggested Citation

  • Smith, C. Scott & Schwieterman, Joseph P., 2021. "Using multivariate adaptive regression splining (MARS) to identify factors affecting the performance of dock-based bikesharing: The case of Chicago’s Divvy system," Research in Transportation Economics, Elsevier, vol. 89(C).
  • Handle: RePEc:eee:retrec:v:89:y:2021:i:c:s0739885921000044
    DOI: 10.1016/j.retrec.2021.101032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0739885921000044
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.retrec.2021.101032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Faghih-Imani, Ahmadreza & Hampshire, Robert & Marla, Lavanya & Eluru, Naveen, 2017. "An empirical analysis of bike sharing usage and rebalancing: Evidence from Barcelona and Seville," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 177-191.
    2. Zhao, Jinbao & Deng, Wei & Song, Yan, 2014. "Ridership and effectiveness of bikesharing: The effects of urban features and system characteristics on daily use and turnover rate of public bikes in China," Transport Policy, Elsevier, vol. 35(C), pages 253-264.
    3. Tien Dung Tran & Nicolas Ovtracht & Bruno Faivre d'Arcier, 2015. "Modeling Bike Sharing System using Built Environment Factors," Post-Print halshs-01474166, HAL.
    4. Faghih-Imani, Ahmadreza & Eluru, Naveen, 2015. "Analysing bicycle-sharing system user destination choice preferences: Chicago’s Divvy system," Journal of Transport Geography, Elsevier, vol. 44(C), pages 53-64.
    5. Sungyop Kim & Gudmundur Ulfarsson, 2008. "Curbing automobile use for sustainable transportation: analysis of mode choice on short home-based trips," Transportation, Springer, vol. 35(6), pages 723-737, November.
    6. Kyle Gebhart & Robert Noland, 2014. "The impact of weather conditions on bikeshare trips in Washington, DC," Transportation, Springer, vol. 41(6), pages 1205-1225, November.
    7. Kou, Zhaoyu & Cai, Hua, 2019. "Understanding bike sharing travel patterns: An analysis of trip data from eight cities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 785-797.
    8. Xiaolu Zhou, 2015. "Understanding Spatiotemporal Patterns of Biking Behavior by Analyzing Massive Bike Sharing Data in Chicago," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-20, October.
    9. Schneider, Robert J., 2013. "Theory of routine mode choice decisions: An operational framework to increase sustainable transportation," Transport Policy, Elsevier, vol. 25(C), pages 128-137.
    10. Greg P. Griffin & Junfeng Jiao, 2019. "Crowdsourcing Bike Share Station Locations," Journal of the American Planning Association, Taylor & Francis Journals, vol. 85(1), pages 35-48, January.
    11. Faghih-Imani, Ahmadreza & Eluru, Naveen & El-Geneidy, Ahmed M. & Rabbat, Michael & Haq, Usama, 2014. "How land-use and urban form impact bicycle flows: evidence from the bicycle-sharing system (BIXI) in Montreal," Journal of Transport Geography, Elsevier, vol. 41(C), pages 306-314.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caulfield, Brian & O'Mahony, Margaret & Brazil, William & Weldon, Peter, 2017. "Examining usage patterns of a bike-sharing scheme in a medium sized city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 152-161.
    2. Kumar Dey, Bibhas & Anowar, Sabreena & Eluru, Naveen, 2021. "A framework for estimating bikeshare origin destination flows using a multiple discrete continuous system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 119-133.
    3. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    4. Zhao, De & Ong, Ghim Ping & Wang, Wei & Hu, Xiao Jian, 2019. "Effect of built environment on shared bicycle reallocation: A case study on Nanjing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 73-88.
    5. Liu, Hung-Chi & Lin, Jen-Jia, 2019. "Associations of built environments with spatiotemporal patterns of public bicycle use," Journal of Transport Geography, Elsevier, vol. 74(C), pages 299-312.
    6. Fabio Kon & Éderson Cássio Ferreira & Higor Amario Souza & Fábio Duarte & Paolo Santi & Carlo Ratti, 2022. "Abstracting mobility flows from bike-sharing systems," Public Transport, Springer, vol. 14(3), pages 545-581, October.
    7. Song, Jie & Zhang, Liye & Qin, Zheng & Ramli, Muhamad Azfar, 2021. "Where are public bikes? The decline of dockless bike-sharing supply in Singapore and its resulting impact on ridership activities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 72-90.
    8. Li, Haojie & Zhang, Yingheng & Ding, Hongliang & Ren, Gang, 2019. "Effects of dockless bike-sharing systems on the usage of the London Cycle Hire," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 398-411.
    9. Namkung, Ok Stella & Park, Jonghan & Ko, Joonho, 2023. "Public bike users’ annual travel distance: Findings from combined data of user survey and annual rental records," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    10. Wang, Kailai & Akar, Gulsah, 2019. "Gender gap generators for bike share ridership: Evidence from Citi Bike system in New York City," Journal of Transport Geography, Elsevier, vol. 76(C), pages 1-9.
    11. Xing, Yingying & Wang, Ke & Lu, Jian John, 2020. "Exploring travel patterns and trip purposes of dockless bike-sharing by analyzing massive bike-sharing data in Shanghai, China," Journal of Transport Geography, Elsevier, vol. 87(C).
    12. Wang, Kailai & Akar, Gulsah & Chen, Yu-Jen, 2018. "Bike sharing differences among Millennials, Gen Xers, and Baby Boomers: Lessons learnt from New York City’s bike share," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 1-14.
    13. Tomasz Bieliński & Agnieszka Kwapisz & Agnieszka Ważna, 2019. "Bike-Sharing Systems in Poland," Sustainability, MDPI, vol. 11(9), pages 1-14, April.
    14. Mingyang Du & Lin Cheng, 2018. "Better Understanding the Characteristics and Influential Factors of Different Travel Patterns in Free-Floating Bike Sharing: Evidence from Nanjing, China," Sustainability, MDPI, vol. 10(4), pages 1-14, April.
    15. Médard de Chardon, Cyrille & Caruso, Geoffrey & Thomas, Isabelle, 2017. "Bicycle sharing system ‘success’ determinants," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 202-214.
    16. Radzimski, Adam & Dzięcielski, Michał, 2021. "Exploring the relationship between bike-sharing and public transport in Poznań, Poland," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 189-202.
    17. Yi Yao & Yifang Zhang & Lixin Tian & Nianxing Zhou & Zhilin Li & Minggang Wang, 2019. "Analysis of Network Structure of Urban Bike-Sharing System: A Case Study Based on Real-Time Data of a Public Bicycle System," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
    18. Ding, Hongliang & Lu, Yuhuan & Sze, N.N. & Li, Haojie, 2022. "Effect of dockless bike-sharing scheme on the demand for London Cycle Hire at the disaggregate level using a deep learning approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 150-163.
    19. Faghih-Imani, Ahmadreza & Eluru, Naveen, 2016. "Examining the Impact of Sample Size in the Analysis of Bicycle Sharing Systems," 57th Transportation Research Forum (51st CTRF) Joint Conference, Toronto, Ontario, May 1-4, 2016 319259, Transportation Research Forum.
    20. Kyoungok Kim, 2024. "Discovering spatiotemporal usage patterns of a bike-sharing system by type of pass: a case study from Seoul," Transportation, Springer, vol. 51(4), pages 1373-1407, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:retrec:v:89:y:2021:i:c:s0739885921000044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/620614/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.