IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v89y2018icp106-116.html
   My bibliography  Save this article

Identifying high potential locations for run-of-the-river hydroelectric power plants using GIS and digital elevation models

Author

Listed:
  • Zaidi, Arjumand Z.
  • Khan, Majid

Abstract

The recent global energy crisis has provoked a need to explore alternate energy sources including run-of-the-river hydropower projects. To derive maximum payback for a given investment, finding the most advantageous siting of power plants is imperative. If a selection of potential sites misses some of the apparently indistinct sites with significant power potential, there is a chance of acquiring only partial benefits out of these investments. A review of the existing methods for evaluating power potential of a river is discussed in this paper with their limitations along with a new proposed approach. The new approach can be used to evaluate different installation schemes along a river to assess run-of-the-river hydropower potentials using geospatial data techniques to select sites exhibiting higher total hydropower potential. The case study of Kunhar River, located in the northern part of Pakistan, presents the applicability of the approach. Open source Advanced Spaceborne Thermal Emission (ASTER)’s digital elevation model (DEM) and regional hydrologic gauged data are used for identifying the best locations for hydropower plants, demonstrating this approach is substantially more cost effective and robust compared to other field based assessment. Replicating the proposed approach for other locations is easy following the step-by-step method presented in this paper and giving consideration to the limitations described. This study may provide guidelines for the development of cost-effective and energy efficient hydropower projects. The use of this approach is most advantageous in the preliminary assessment phase of a project to narrow the scope of the detailed study focusing only on the higher potential sites.

Suggested Citation

  • Zaidi, Arjumand Z. & Khan, Majid, 2018. "Identifying high potential locations for run-of-the-river hydroelectric power plants using GIS and digital elevation models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 106-116.
  • Handle: RePEc:eee:rensus:v:89:y:2018:i:c:p:106-116
    DOI: 10.1016/j.rser.2018.02.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118300522
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.02.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Larentis, Dante G. & Collischonn, Walter & Olivera, Francisco & Tucci, Carlos E.M., 2010. "Gis-based procedures for hydropower potential spotting," Energy, Elsevier, vol. 35(10), pages 4237-4243.
    2. Palomino Cuya, Daly Grace & Brandimarte, Luigia & Popescu, Ioana & Alterach, Julio & Peviani, Maximo, 2013. "A GIS-based assessment of maximum potential hydropower production in La Plata basin under global changes," Renewable Energy, Elsevier, vol. 50(C), pages 103-114.
    3. Darmawi, & Sipahutar, Riman & Bernas, Siti Masreah & Imanuddin, Momon Sodik, 2013. "Renewable energy and hydropower utilization tendency worldwide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 213-215.
    4. Belmonte, S. & Núñez, V. & Viramonte, J.G. & Franco, J., 2009. "Potential renewable energy resources of the Lerma Valley, Salta, Argentina for its strategic territorial planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1475-1484, August.
    5. Yi, Choong-Sung & Lee, Jin-Hee & Shim, Myung-Pil, 2010. "Site location analysis for small hydropower using geo-spatial information system," Renewable Energy, Elsevier, vol. 35(4), pages 852-861.
    6. Huang, Hailun & Yan, Zheng, 2009. "Present situation and future prospect of hydropower in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1652-1656, August.
    7. Kusre, B.C. & Baruah, D.C. & Bordoloi, P.K. & Patra, S.C., 2010. "Assessment of hydropower potential using GIS and hydrological modeling technique in Kopili River basin in Assam (India)," Applied Energy, Elsevier, vol. 87(1), pages 298-309, January.
    8. Bartle, Alison, 2002. "Hydropower potential and development activities," Energy Policy, Elsevier, vol. 30(14), pages 1231-1239, November.
    9. Rojanamon, Pannathat & Chaisomphob, Taweep & Bureekul, Thawilwadee, 2009. "Application of geographical information system to site selection of small run-of-river hydropower project by considering engineering/economic/environmental criteria and social impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2336-2348, December.
    10. Ferreira, Jacson Hudson Inácio & Camacho, José Roberto & Malagoli, Juliana Almansa & Júnior, Sebastião Camargo Guimarães, 2016. "Assessment of the potential of small hydropower development in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 380-387.
    11. Dudhani, Surekha & Sinha, A.K. & Inamdar, S.S., 2006. "Assessment of small hydropower potential using remote sensing data for sustainable development in India," Energy Policy, Elsevier, vol. 34(17), pages 3195-3205, November.
    12. Bayazıt, Yıldırım & Bakış, Recep & Koç, Cengiz, 2017. "An investigation of small scale hydropower plants using the geographic information system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 289-294.
    13. Balat, Havva, 2007. "A renewable perspective for sustainable energy development in Turkey: The case of small hydropower plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 2152-2165, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gerardo Alcalá & Luis Fernando Grisales-Noreña & Quetzalcoatl Hernandez-Escobedo & Jose Javier Muñoz-Criollo & J. D. Revuelta-Acosta, 2021. "SHP Assessment for a Run-of-River (RoR) Scheme Using a Rectangular Mesh Sweeping Approach (MSA) Based on GIS," Energies, MDPI, vol. 14(11), pages 1-21, May.
    2. Qiu, Lihua & He, Li & Kang, Yu & Liang, Dongzhe, 2022. "Assessment of the potential of enhanced geothermal systems in Asia under the impact of global warming," Renewable Energy, Elsevier, vol. 194(C), pages 636-646.
    3. Dhaubanjar, Sanita & Lutz, Arthur F & Pradhananga, Saurav & Smolenaars, Wouter & Khanal, Sonu & Biemans, Hester & Nepal, Santosh & Ludwig, Fulco & Shrestha, Arun Bhakta & Immerzeel, Walter W, 2024. "From theoretical to sustainable potential for run-of-river hydropower development in the upper Indus basin," Applied Energy, Elsevier, vol. 357(C).
    4. Haseeb Akbar & Pariyapat Nilsalab & Thapat Silalertruksa & Shabbir H. Gheewala, 2023. "The Effect of Climate Change on the Hydropower Potential in the Kunhar River Watershed, Pakistan," World, MDPI, vol. 4(4), pages 1-19, November.
    5. Besharati Fard, Moein & Moradian, Parisa & Emarati, Mohammadreza & Ebadi, Mehdi & Gholamzadeh Chofreh, Abdoulmohammad & Klemeŝ, Jiří Jaromír, 2022. "Ground-mounted photovoltaic power station site selection and economic analysis based on a hybrid fuzzy best-worst method and geographic information system: A case study Guilan province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    6. Changjun Wang & Shutong Chen, 2019. "Planning of Cascade Hydropower Stations with the Consideration of Long-Term Operations under Uncertainties," Complexity, Hindawi, vol. 2019, pages 1-23, November.
    7. Tamm, Ottar & Tamm, Toomas, 2020. "Verification of a robust method for sizing and siting the small hydropower run-of-river plant potential by using GIS," Renewable Energy, Elsevier, vol. 155(C), pages 153-159.
    8. Dendup, Ngawang, 2022. "Returns to grid electricity on firewood and kerosene: Mechanism," Journal of Environmental Economics and Management, Elsevier, vol. 111(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soulis, Konstantinos X. & Manolakos, Dimitris & Anagnostopoulos, John & Papantonis, Dimitris, 2016. "Development of a geo-information system embedding a spatially distributed hydrological model for the preliminary assessment of the hydropower potential of historical hydro sites in poorly gauged areas," Renewable Energy, Elsevier, vol. 92(C), pages 222-232.
    2. Mosier, Thomas M. & Sharp, Kendra V. & Hill, David F., 2016. "The Hydropower Potential Assessment Tool (HPAT): Evaluation of run-of-river resource potential for any global land area and application to Falls Creek, Oregon, USA," Renewable Energy, Elsevier, vol. 97(C), pages 492-503.
    3. Alexandros Korkovelos & Dimitrios Mentis & Shahid Hussain Siyal & Christopher Arderne & Holger Rogner & Morgan Bazilian & Mark Howells & Hylke Beck & Ad De Roo, 2018. "A Geospatial Assessment of Small-Scale Hydropower Potential in Sub-Saharan Africa," Energies, MDPI, vol. 11(11), pages 1-21, November.
    4. Anita Kwartnik-Pruc & Aneta Mączyńska, 2022. "Assessing Validity of Employing Surveying Methods to Capture Data on Topography to Determine Hydrological and Topographic Parameters Essential for Selecting Locations for the Construction of Small Hyd," Energies, MDPI, vol. 15(4), pages 1-41, February.
    5. Kelly-Richards, Sarah & Silber-Coats, Noah & Crootof, Arica & Tecklin, David & Bauer, Carl, 2017. "Governing the transition to renewable energy: A review of impacts and policy issues in the small hydropower boom," Energy Policy, Elsevier, vol. 101(C), pages 251-264.
    6. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    7. Gerardo Alcalá & Luis Fernando Grisales-Noreña & Quetzalcoatl Hernandez-Escobedo & Jose Javier Muñoz-Criollo & J. D. Revuelta-Acosta, 2021. "SHP Assessment for a Run-of-River (RoR) Scheme Using a Rectangular Mesh Sweeping Approach (MSA) Based on GIS," Energies, MDPI, vol. 14(11), pages 1-21, May.
    8. Moiz, Abdul & Kawasaki, Akiyuki & Koike, Toshio & Shrestha, Maheswor, 2018. "A systematic decision support tool for robust hydropower site selection in poorly gauged basins," Applied Energy, Elsevier, vol. 224(C), pages 309-321.
    9. Ioannidou, Christina & O’Hanley, Jesse R., 2018. "Eco-friendly location of small hydropower," European Journal of Operational Research, Elsevier, vol. 264(3), pages 907-918.
    10. Petras Punys & Antanas Dumbrauskas & Algis Kvaraciejus & Gitana Vyciene, 2011. "Tools for Small Hydropower Plant Resource Planning and Development: A Review of Technology and Applications," Energies, MDPI, vol. 4(9), pages 1-20, August.
    11. Balkhair, Khaled S. & Rahman, Khalil Ur, 2017. "Sustainable and economical small-scale and low-head hydropower generation: A promising alternative potential solution for energy generation at local and regional scale," Applied Energy, Elsevier, vol. 188(C), pages 378-391.
    12. Izadyar, Nima & Ong, Hwai Chyuan & Chong, W.T. & Leong, K.Y., 2016. "Resource assessment of the renewable energy potential for a remote area: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 908-923.
    13. Vincenzo Sammartano & Lorena Liuzzo & Gabriele Freni, 2019. "Identification of Potential Locations for Run-of-River Hydropower Plants Using a GIS-Based Procedure," Energies, MDPI, vol. 12(18), pages 1-20, September.
    14. Abdelhady, Hazem U. & Imam, Yehya E. & Shawwash, Ziad & Ghanem, Ashraf, 2021. "Parallelized Bi-level optimization model with continuous search domain for selection of run-of-river hydropower projects," Renewable Energy, Elsevier, vol. 167(C), pages 116-131.
    15. Fasipe, O.A. & Izinyon, O.C. & Ehiorobo, J.O., 2021. "Hydropower potential assessment using spatial technology and hydrological modelling in Nigeria river basin," Renewable Energy, Elsevier, vol. 178(C), pages 960-976.
    16. Larentis, Dante G. & Collischonn, Walter & Olivera, Francisco & Tucci, Carlos E.M., 2010. "Gis-based procedures for hydropower potential spotting," Energy, Elsevier, vol. 35(10), pages 4237-4243.
    17. Palomino Cuya, Daly Grace & Brandimarte, Luigia & Popescu, Ioana & Alterach, Julio & Peviani, Maximo, 2013. "A GIS-based assessment of maximum potential hydropower production in La Plata basin under global changes," Renewable Energy, Elsevier, vol. 50(C), pages 103-114.
    18. Tamm, Ottar & Tamm, Toomas, 2020. "Verification of a robust method for sizing and siting the small hydropower run-of-river plant potential by using GIS," Renewable Energy, Elsevier, vol. 155(C), pages 153-159.
    19. Bayazıt, Yıldırım & Bakış, Recep & Koç, Cengiz, 2017. "An investigation of small scale hydropower plants using the geographic information system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 289-294.
    20. Operacz, Agnieszka, 2017. "The term “effective hydropower potential” based on sustainable development – an initial case study of the Raba river in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1453-1463.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:89:y:2018:i:c:p:106-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.