IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i4p771-d1334402.html
   My bibliography  Save this article

Sustainable Smart City Technologies and Their Impact on Users’ Energy Consumption Behaviour

Author

Listed:
  • Hidayati Ramli

    (Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK)

  • Zahirah Mokhtar Azizi

    (Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK)

  • Niraj Thurairajah

    (Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK)

Abstract

Sustainable smart cities (SSCs) target decarbonisation by optimising energy consumption through the emerging capabilities of technology. Nevertheless, the energy consumption behaviour of end users has the potential to compromise the effectiveness of technological interventions, reflecting the importance of active social engagement in realising decarbonisation goals. Although extensive research exists on energy consumption behaviour, little is known about how technology engagement affects it, the nature of these technologies, and their role in SSC. The paper aims to identify, categorise, and investigate the smart technologies that impact household energy consumption behaviours and their integration into the larger SSC system. Following a systematic review of 60 articles from the Scopus database (2013–2023), the study found 45 smart technologies cited, with 49% affecting efficiency behaviour and 51% affecting curtailment behaviour. While these technologies inform the city administration level in the SSC framework, the role of end users remains unclear, suggesting a technocratic approach. The study proposes the Sustainable Smart City Network to facilitate a grassroots approach, identifying five key domains: government policies, smart technology adoption, smart technology engagement, smart city infrastructure, and urban sustainability. The study provides an original contribution to knowledge by unveiling the key technologies affecting energy consumption behaviour and outlining the pragmatic requirements for achieving decarbonisation through a grassroots approach.

Suggested Citation

  • Hidayati Ramli & Zahirah Mokhtar Azizi & Niraj Thurairajah, 2024. "Sustainable Smart City Technologies and Their Impact on Users’ Energy Consumption Behaviour," Energies, MDPI, vol. 17(4), pages 1-28, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:771-:d:1334402
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/4/771/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/4/771/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kumar, Pranay & Caggiano, Holly & Shwom, Rachael & Felder, Frank A. & Andrews, Clinton J., 2023. "Saving from home! How income, efficiency, and curtailment behaviors shape energy consumption dynamics in US households?," Energy, Elsevier, vol. 271(C).
    2. Simon Joss & Frans Sengers & Daan Schraven & Federico Caprotti & Youri Dayot, 2019. "The Smart City as Global Discourse: Storylines and Critical Junctures across 27 Cities," Journal of Urban Technology, Taylor & Francis Journals, vol. 26(1), pages 3-34, January.
    3. van den Buuse, Daniel & Kolk, Ans, 2019. "An exploration of smart city approaches by international ICT firms," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 220-234.
    4. Vahid Balali & Soheil Fathi & Mehrdad Aliasgari, 2020. "Vector Maps Mobile Application for Sustainable Eco-Driving Transportation Route Selection," Sustainability, MDPI, vol. 12(14), pages 1-17, July.
    5. Yigitcanlar, Tan & Kamruzzaman, Md., 2018. "Does smart city policy lead to sustainability of cities?," Land Use Policy, Elsevier, vol. 73(C), pages 49-58.
    6. Luca Mora & Mark Deakin & Xiaoling Zhang & Michael Batty & Martin de Jong & Paolo Santi & Francesco Paolo Appio, 2021. "Assembling Sustainable Smart City Transitions: An Interdisciplinary Theoretical Perspective," Journal of Urban Technology, Taylor & Francis Journals, vol. 28(1-2), pages 1-27, April.
    7. Estrella Trincado & Antonio Sánchez-Bayón & José María Vindel, 2021. "The European Union Green Deal: Clean Energy Wellbeing Opportunities and the Risk of the Jevons Paradox," Energies, MDPI, vol. 14(14), pages 1-23, July.
    8. Wei, Yixuan & Xia, Liang & Pan, Song & Wu, Jinshun & Zhang, Xingxing & Han, Mengjie & Zhang, Weiya & Xie, Jingchao & Li, Qingping, 2019. "Prediction of occupancy level and energy consumption in office building using blind system identification and neural networks," Applied Energy, Elsevier, vol. 240(C), pages 276-294.
    9. Cheng Siew Goh & Heap-Yih Chong, 2023. "Opportunities in the Sustainable Built Environment: Perspectives on Human-Centric Approaches," Energies, MDPI, vol. 16(3), pages 1-8, January.
    10. Lindner, Ralf & Daimer, Stephanie & Beckert, Bernd & Heyen, Nils & Koehler, Jonathan & Teufel, Benjamin & Warnke, Philine & Wydra, Sven, 2016. "Addressing directionality: Orientation failure and the systems of innovation heuristic. Towards reflexive governance," Discussion Papers "Innovation Systems and Policy Analysis" 52, Fraunhofer Institute for Systems and Innovation Research (ISI).
    11. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    12. Chalal, Moulay Larbi & Benachir, Medjdoub & White, Michael & Shahtahmassebi, Golnaz & Cumberbatch, Miranda & Shrahily, Raid, 2017. "The impact of the UK household life-cycle transitions on the electricity and gas usage patterns," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 505-518.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Danuta Szpilko & Xavier Fernando & Elvira Nica & Klaudia Budna & Agnieszka Rzepka & George Lăzăroiu, 2024. "Energy in Smart Cities: Technological Trends and Prospects," Energies, MDPI, vol. 17(24), pages 1-35, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yituan Liu & Qihang Li & Zheng Zhang, 2022. "Do Smart Cities Restrict the Carbon Emission Intensity of Enterprises? Evidence from a Quasi-Natural Experiment in China," Energies, MDPI, vol. 15(15), pages 1-20, July.
    2. Tara Vanli, 2024. "Can systemic governance of smart cities catalyse urban sustainability?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 23327-23384, September.
    3. Baogui Xin & Yongmei Qu, 2019. "Effects of Smart City Policies on Green Total Factor Productivity: Evidence from a Quasi-Natural Experiment in China," IJERPH, MDPI, vol. 16(13), pages 1-15, July.
    4. Clement, Jessica & Ruysschaert, Benoit & Crutzen, Nathalie, 2023. "Smart city strategies – A driver for the localization of the sustainable development goals?," Ecological Economics, Elsevier, vol. 213(C).
    5. Hidayati Ramli & Zahirah Mokhtar Azizi & Niraj Thurairajah, 2025. "Catalysing Urban Sustainability Transitions Through Household Smart Technology Engagement," Sustainability, MDPI, vol. 17(5), pages 1-36, February.
    6. Wei, Shuangyu & Tien, Paige Wenbin & Calautit, John Kaiser & Wu, Yupeng & Boukhanouf, Rabah, 2020. "Vision-based detection and prediction of equipment heat gains in commercial office buildings using a deep learning method," Applied Energy, Elsevier, vol. 277(C).
    7. Ari-Veikko Anttiroiko, 2023. "Smart Circular Cities: Governing the Relationality, Spatiality, and Digitality in the Promotion of Circular Economy in an Urban Region," Sustainability, MDPI, vol. 15(17), pages 1-41, August.
    8. Mora, Luca & Gerli, Paolo & Ardito, Lorenzo & Messeni Petruzzelli, Antonio, 2023. "Smart city governance from an innovation management perspective: Theoretical framing, review of current practices, and future research agenda," Technovation, Elsevier, vol. 123(C).
    9. Tan Yigitcanlar & Hoon Han & Md. Kamruzzaman, 2019. "Approaches, Advances, and Applications in the Sustainable Development of Smart Cities: A Commentary from the Guest Editors," Energies, MDPI, vol. 12(23), pages 1-11, November.
    10. Anke Strüver & Rivka Saltiel & Nicolas Schlitz & Bernhard Hohmann & Thomas Höflehner & Barbara Grabher, 2021. "A Smart Right to the City—Grounding Corporate Storytelling and Questioning Smart Urbanism," Sustainability, MDPI, vol. 13(17), pages 1-17, August.
    11. Yigitcanlar, Tan & Han, Hoon & Kamruzzaman, Md. & Ioppolo, Giuseppe & Sabatini-Marques, Jamile, 2019. "The making of smart cities: Are Songdo, Masdar, Amsterdam, San Francisco and Brisbane the best we could build?," Land Use Policy, Elsevier, vol. 88(C).
    12. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Assessment of Energy and Heat Consumption Trends and Forecasting in the Small Consumer Sector in Poland Based on Historical Data," Resources, MDPI, vol. 12(9), pages 1-33, September.
    13. Mariusz J. Ligarski & Tomasz Owczarek, 2024. "Preparing Quality of Life Surveys Versus Using Information for Sustainable Development: The Example of Polish Cities," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 173(3), pages 765-782, July.
    14. Paola Panuccio, 2019. "Smart Planning: From City to Territorial System," Sustainability, MDPI, vol. 11(24), pages 1-15, December.
    15. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    16. Tan Yigitcanlar & Kevin C. Desouza & Luke Butler & Farnoosh Roozkhosh, 2020. "Contributions and Risks of Artificial Intelligence (AI) in Building Smarter Cities: Insights from a Systematic Review of the Literature," Energies, MDPI, vol. 13(6), pages 1-38, March.
    17. Kevin Morgan & Brian Webb, 2020. "Googling the City: In Search of the Public Interest on Toronto’s ‘Smart’ Waterfront," Urban Planning, Cogitatio Press, vol. 5(1), pages 84-95.
    18. Federico Cugurullo, 2018. "Book review: Sustainable Smart Cities in India: Challenges and Future Perspectives," Urban Studies, Urban Studies Journal Limited, vol. 55(15), pages 3494-3496, November.
    19. Lian, Huihui & Ji, Ying & Niu, Menghan & Gu, Jiefan & Xie, Jingchao & Liu, Jiaping, 2025. "A hybrid load prediction method of office buildings based on physical simulation database and LightGBM algorithm," Applied Energy, Elsevier, vol. 377(PC).
    20. Wang, Jianxiao & An, Qi & Zhao, Yue & Pan, Guangsheng & Song, Jie & Hu, Qinran & Tan, Chin-Woo, 2023. "Role of electrolytic hydrogen in smart city decarbonization in China," Applied Energy, Elsevier, vol. 336(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:771-:d:1334402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.