IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v79y2017icp293-303.html
   My bibliography  Save this article

Laboratory exercises of photovoltaic systems–Review of the equpment, methodology, trials and results

Author

Listed:
  • Skoko, Sasa M.
  • Ciric, Rade M.

Abstract

The laboratory for renewable energy sources of the Higher Education Technical School of Professional Studies in Novi Sad (Serbia) contains the equipment regarding solar and thermal techniques, based on the implementation of solar panels, heat pumps and a pellet stove. Photovoltaic systems include the implementation of static photovoltaic panels, trackers and inverters for power supply of autonomous consumers. In addition, the laboratory is equipped with modern systems of internal and external lighting, a wind generator with accompanying inverter, elements of smart installations and fuel cell systems for laboratory measurements. This paper presents experiences in the implementation of the photovoltaic systems in the educational process through laboratory exercises. The specification of the laboratory equipment, the methodology of work, as well as the electrical schemes of experiments of open circuits and short circuit, recording of electricity-voltage characteristics, tracking the maximum power point, serial and parallel connection and shading of photovoltaic cell are presented. The second group of the trial is performed on the "off grid" photovoltaic system set in the schoolyard and connected to the appropriate inverter with the autonomous group of consumers. The paper presents the results of laboratory measurements, issues for discussion, evaluation of the performance and conclusions.

Suggested Citation

  • Skoko, Sasa M. & Ciric, Rade M., 2017. "Laboratory exercises of photovoltaic systems–Review of the equpment, methodology, trials and results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 293-303.
  • Handle: RePEc:eee:rensus:v:79:y:2017:i:c:p:293-303
    DOI: 10.1016/j.rser.2017.05.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117307104
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.05.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hasan, M.A. & Parida, S.K., 2016. "An overview of solar photovoltaic panel modeling based on analytical and experimental viewpoint," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 75-83.
    2. Ma, Tao & Yang, Hongxing & Lu, Lin, 2014. "Solar photovoltaic system modeling and performance prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 304-315.
    3. Stropnik, Rok & Stritih, Uroš, 2016. "Increasing the efficiency of PV panel with the use of PCM," Renewable Energy, Elsevier, vol. 97(C), pages 671-679.
    4. Ciulla, Giuseppina & Lo Brano, Valerio & Di Dio, Vincenzo & Cipriani, Giovanni, 2014. "A comparison of different one-diode models for the representation of I–V characteristic of a PV cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 684-696.
    5. Cotfas, D.T. & Cotfas, P.A. & Kaplanis, S., 2013. "Methods to determine the dc parameters of solar cells: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 588-596.
    6. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    7. Kichou, Sofiane & Silvestre, Santiago & Guglielminotti, Letizia & Mora-López, Llanos & Muñoz-Cerón, Emilio, 2016. "Comparison of two PV array models for the simulation of PV systems using five different algorithms for the parameters identification," Renewable Energy, Elsevier, vol. 99(C), pages 270-279.
    8. Stigka, Eleni K. & Paravantis, John A. & Mihalakakou, Giouli K., 2014. "Social acceptance of renewable energy sources: A review of contingent valuation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 100-106.
    9. Kandpal, Tara C. & Broman, Lars, 2014. "Renewable energy education: A global status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 300-324.
    10. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pastor, Rafael & Tobarra, Llanos & Robles-Gómez, Antonio & Cano, Jesús & Hammad, Bashar & Al-Zoubi, Abdullah & Hernández, Roberto & Castro, Manuel, 2020. "Renewable energy remote online laboratories in Jordan universities: Tools for training students in Jordan," Renewable Energy, Elsevier, vol. 149(C), pages 749-759.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Firoz & Al-Ahmed, Amir & Al-Sulaiman, Fahad A., 2021. "Critical analysis of the limitations and validity of the assumptions with the analytical methods commonly used to determine the photovoltaic cell parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    2. Senturk, Ali, 2020. "Investigation of datasheet provided temperature coefficients of photovoltaic modules under various sky profiles at the field by applying a new validation procedure," Renewable Energy, Elsevier, vol. 152(C), pages 644-652.
    3. Senturk, A. & Eke, R., 2017. "A new method to simulate photovoltaic performance of crystalline silicon photovoltaic modules based on datasheet values," Renewable Energy, Elsevier, vol. 103(C), pages 58-69.
    4. Gonçalves, Juliana E. & van Hooff, Twan & Saelens, Dirk, 2021. "Simulating building integrated photovoltaic facades: Comparison to experimental data and evaluation of modelling complexity," Applied Energy, Elsevier, vol. 281(C).
    5. Singh, Rashmi & Sharma, Madhu & Rawat, Rahul & Banerjee, Chandan, 2018. "An assessment of series resistance estimation techniques for different silicon based SPV modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 199-216.
    6. Peñaranda Chenche, Luz Elena & Hernandez Mendoza, Oscar Saul & Bandarra Filho, Enio Pedone, 2018. "Comparison of four methods for parameter estimation of mono- and multi-junction photovoltaic devices using experimental data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2823-2838.
    7. Bevilacqua, Piero & Perrella, Stefania & Bruno, Roberto & Arcuri, Natale, 2021. "An accurate thermal model for the PV electric generation prediction: long-term validation in different climatic conditions," Renewable Energy, Elsevier, vol. 163(C), pages 1092-1112.
    8. Li, Zhenpeng & Ma, Tao & Zhao, Jiaxin & Song, Aotian & Cheng, Yuanda, 2019. "Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material," Energy, Elsevier, vol. 178(C), pages 471-486.
    9. Madi, Saida & Kheldoun, Aissa, 2017. "Bond graph based modeling for parameter identification of photovoltaic module," Energy, Elsevier, vol. 141(C), pages 1456-1465.
    10. Muhsen, Dhiaa Halboot & Khatib, Tamer & Nagi, Farrukh, 2017. "A review of photovoltaic water pumping system designing methods, control strategies and field performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 70-86.
    11. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    12. Abbassi, Rabeh & Abbassi, Abdelkader & Jemli, Mohamed & Chebbi, Souad, 2018. "Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 453-474.
    13. Efstratios Batzelis, 2019. "Non-Iterative Methods for the Extraction of the Single-Diode Model Parameters of Photovoltaic Modules: A Review and Comparative Assessment," Energies, MDPI, vol. 12(3), pages 1-26, January.
    14. Humada, Ali M. & Hojabri, Mojgan & Mekhilef, Saad & Hamada, Hussein M., 2016. "Solar cell parameters extraction based on single and double-diode models: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 494-509.
    15. Tihomir Betti & Ante Kristić & Ivan Marasović & Vesna Pekić, 2024. "Accuracy of Simscape Solar Cell Block for Modeling a Partially Shaded Photovoltaic Module," Energies, MDPI, vol. 17(10), pages 1-19, May.
    16. Carbajo, Ruth & Cabeza, Luisa F., 2018. "Renewable energy research and technologies through responsible research and innovation looking glass: Reflexions, theoretical approaches and contemporary discourses," Applied Energy, Elsevier, vol. 211(C), pages 792-808.
    17. Pillai, Dhanup S. & Rajasekar, N., 2018. "Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3503-3525.
    18. Vasileios Kapsalis & Grigorios Kyriakopoulos & Miltiadis Zamparas & Athanasios Tolis, 2021. "Investigation of the Photon to Charge Conversion and Its Implication on Photovoltaic Cell Efficient Operation," Energies, MDPI, vol. 14(11), pages 1-16, May.
    19. Chen, Zhicong & Yu, Hui & Luo, Linlu & Wu, Lijun & Zheng, Qiao & Wu, Zhenhui & Cheng, Shuying & Lin, Peijie, 2021. "Rapid and accurate modeling of PV modules based on extreme learning machine and large datasets of I-V curves," Applied Energy, Elsevier, vol. 292(C).
    20. Zhao, Jiaxin & Ma, Tao & Li, Zhenpeng & Song, Aotian, 2019. "Year-round performance analysis of a photovoltaic panel coupled with phase change material," Applied Energy, Elsevier, vol. 245(C), pages 51-64.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:79:y:2017:i:c:p:293-303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.