IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v76y2017icp391-406.html
   My bibliography  Save this article

A review on state of art development of model predictive control for renewable energy applications

Author

Listed:
  • Sultana, W. Razia
  • Sahoo, Sarat Kumar
  • Sukchai, Sukruedee
  • Yamuna, S.
  • Venkatesh, D.

Abstract

Renewable energy sector is undergoing rapid expansion as the global focus is shifting towards cleaner, reliable and sustainable resources. As the new installation of these resources are well underway, there is tremendous potential for exploring these to more advanced control algorithms. Model predictive control is gaining immense popularity because of its flexible controllability, its ability to be used in any of application irrespective of its field as well as the availability of fast processors. This paper presents a systematic review on Photo-voltaic (PV) and wind energy systems controlled by Model predictive control approach. The work presented here will help the researchers to further explore the flexibility of this controller for design, analysis and implementation in renewable energy systems.

Suggested Citation

  • Sultana, W. Razia & Sahoo, Sarat Kumar & Sukchai, Sukruedee & Yamuna, S. & Venkatesh, D., 2017. "A review on state of art development of model predictive control for renewable energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 391-406.
  • Handle: RePEc:eee:rensus:v:76:y:2017:i:c:p:391-406
    DOI: 10.1016/j.rser.2017.03.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117303672
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.03.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    2. Eltigani, Dalia & Masri, Syafrudin, 2015. "Challenges of integrating renewable energy sources to smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 770-780.
    3. Ho, Lip-Wah, 2016. "Wind energy in Malaysia: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 279-295.
    4. Hao Liang & Weihua Zhuang, 2014. "Stochastic Modeling and Optimization in a Microgrid: A Survey," Energies, MDPI, vol. 7(4), pages 1-24, March.
    5. Zhanfeng Song & Yanjun Tian & Zhe Chen & Yanting Hu, 2016. "Enhanced Predictive Current Control of Three-Phase Grid-Tied Reversible Converters with Improved Switching Patterns," Energies, MDPI, vol. 9(1), pages 1-16, January.
    6. Kumar, Yogesh & Ringenberg, Jordan & Depuru, Soma Shekara & Devabhaktuni, Vijay K. & Lee, Jin Woo & Nikolaidis, Efstratios & Andersen, Brett & Afjeh, Abdollah, 2016. "Wind energy: Trends and enabling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 209-224.
    7. Mahesh, Aeidapu & Sandhu, Kanwarjit Singh, 2015. "Hybrid wind/photovoltaic energy system developments: Critical review and findings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1135-1147.
    8. Colak, Ilhami & Fulli, Gianluca & Bayhan, Sertac & Chondrogiannis, Stamatios & Demirbas, Sevki, 2015. "Critical aspects of wind energy systems in smart grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 155-171.
    9. Alnasir, Zuher & Kazerani, Mehrdad, 2013. "An analytical literature review of stand-alone wind energy conversion systems from generator viewpoint," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 597-615.
    10. Ku Ahmad, Ku Nurul Edhura & Selvaraj, Jeyraj & Rahim, Nasrudin Abd, 2013. "A review of the islanding detection methods in grid-connected PV inverters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 756-766.
    11. Mirhassani, SeyedMohsen & Ong, Hwai Chyuan & Chong, W.T. & Leong, K.Y., 2015. "Advances and challenges in grid tied photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 121-131.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kneiske, T.M. & Braun, M. & Hidalgo-Rodriguez, D.I., 2018. "A new combined control algorithm for PV-CHP hybrid systems," Applied Energy, Elsevier, vol. 210(C), pages 964-973.
    2. Gimara Rajapakse & Shantha Jayasinghe & Alan Fleming & Michael Negnevitsky, 2017. "A Model Predictive Control-Based Power Converter System for Oscillating Water Column Wave Energy Converters," Energies, MDPI, vol. 10(10), pages 1-17, October.
    3. Wu, Jinhui & Yang, Fuwen, 2023. "A dual-driven predictive control for photovoltaic-diesel microgrid secondary frequency regulation," Applied Energy, Elsevier, vol. 334(C).
    4. Tarragona, Joan & Pisello, Anna Laura & Fernández, Cèsar & de Gracia, Alvaro & Cabeza, Luisa F., 2021. "Systematic review on model predictive control strategies applied to active thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Ariel Villalón & Marco Rivera & Yamisleydi Salgueiro & Javier Muñoz & Tomislav Dragičević & Frede Blaabjerg, 2020. "Predictive Control for Microgrid Applications: A Review Study," Energies, MDPI, vol. 13(10), pages 1-32, May.
    6. Liu, Zhaoming & Chang, Guofeng & Yuan, Hao & Tang, Wei & Xie, Jiaping & Wei, Xuezhe & Dai, Haifeng, 2023. "Adaptive look-ahead model predictive control strategy of vehicular PEMFC thermal management," Energy, Elsevier, vol. 285(C).
    7. Edison Banguero & Antonio Correcher & Ángel Pérez-Navarro & Francisco Morant & Andrés Aristizabal, 2018. "A Review on Battery Charging and Discharging Control Strategies: Application to Renewable Energy Systems," Energies, MDPI, vol. 11(4), pages 1-15, April.
    8. Sulaiman, N. & Hannan, M.A. & Mohamed, A. & Ker, P.J. & Majlan, E.H. & Wan Daud, W.R., 2018. "Optimization of energy management system for fuel-cell hybrid electric vehicles: Issues and recommendations," Applied Energy, Elsevier, vol. 228(C), pages 2061-2079.
    9. Hu, Maomao & Xiao, Fu & Jørgensen, John Bagterp & Wang, Shengwei, 2019. "Frequency control of air conditioners in response to real-time dynamic electricity prices in smart grids," Applied Energy, Elsevier, vol. 242(C), pages 92-106.
    10. Shen, Weijie & Zeng, Bo & Zeng, Ming, 2023. "Multi-timescale rolling optimization dispatch method for integrated energy system with hybrid energy storage system," Energy, Elsevier, vol. 283(C).
    11. Quan, Shengwei & Wang, Ya-Xiong & Xiao, Xuelian & He, Hongwen & Sun, Fengchun, 2021. "Feedback linearization-based MIMO model predictive control with defined pseudo-reference for hydrogen regulation of automotive fuel cells," Applied Energy, Elsevier, vol. 293(C).
    12. Hu, Maomao & Xiao, Fu & Wang, Shengwei, 2021. "Neighborhood-level coordination and negotiation techniques for managing demand-side flexibility in residential microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Juan Moreno-Castro & Victor Samuel Ocaña Guevara & Lesyani Teresa León Viltre & Yandi Gallego Landera & Oscar Cuaresma Zevallos & Miguel Aybar-Mejía, 2023. "Microgrid Management Strategies for Economic Dispatch of Electricity Using Model Predictive Control Techniques: A Review," Energies, MDPI, vol. 16(16), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tareen, Wajahat Ullah & Mekhilef, Saad & Seyedmahmoudian, Mehdi & Horan, Ben, 2017. "Active power filter (APF) for mitigation of power quality issues in grid integration of wind and photovoltaic energy conversion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 635-655.
    2. Minh Tri Nguyen & Tri Dung Dang & Kyoung Kwan Ahn, 2019. "Application of Electro-Hydraulic Actuator System to Control Continuously Variable Transmission in Wind Energy Converter," Energies, MDPI, vol. 12(13), pages 1-19, June.
    3. Ellabban, Omar & Abu-Rub, Haitham, 2016. "Smart grid customers' acceptance and engagement: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1285-1298.
    4. Köktürk, G. & Tokuç, A., 2017. "Vision for wind energy with a smart grid in Izmir," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 332-345.
    5. Colak, Ilhami & Sagiroglu, Seref & Fulli, Gianluca & Yesilbudak, Mehmet & Covrig, Catalin-Felix, 2016. "A survey on the critical issues in smart grid technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 396-405.
    6. Tajeddin, Alireza & Fazelpour, Farivar, 2016. "Towards realistic design of wind dams: An innovative approach to enhance wind potential," Applied Energy, Elsevier, vol. 182(C), pages 282-298.
    7. Laura Cornejo-Bueno & Lucas Cuadra & Silvia Jiménez-Fernández & Javier Acevedo-Rodríguez & Luis Prieto & Sancho Salcedo-Sanz, 2017. "Wind Power Ramp Events Prediction with Hybrid Machine Learning Regression Techniques and Reanalysis Data," Energies, MDPI, vol. 10(11), pages 1-27, November.
    8. Manditereza, Patrick Tendayi & Bansal, Ramesh, 2016. "Renewable distributed generation: The hidden challenges – A review from the protection perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1457-1465.
    9. Kala, Peeyush & Arora, Sudha, 2017. "A comprehensive study of classical and hybrid multilevel inverter topologies for renewable energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 905-931.
    10. Abdeshahian, Peyman & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2016. "Potential of biogas production from farm animal waste in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 714-723.
    11. Nan Jin & Leilei Guo & Gang Yao, 2017. "Model Predictive Direct Power Control for Nonredundant Fault Tolerant Grid-Connected Bidirectional Voltage Source Converter," Energies, MDPI, vol. 10(8), pages 1-16, August.
    12. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    13. Avilés A., Camilo & Oliva H., Sebastian & Watts, David, 2019. "Single-dwelling and community renewable microgrids: Optimal sizing and energy management for new business models," Applied Energy, Elsevier, vol. 254(C).
    14. Liu, Zepeng & Zhang, Long & Carrasco, Joaquin, 2020. "Vibration analysis for large-scale wind turbine blade bearing fault detection with an empirical wavelet thresholding method," Renewable Energy, Elsevier, vol. 146(C), pages 99-110.
    15. Al-Falahi, Monaaf D.A. & Jayasinghe, Shantha D.G. & Enshaei, Hossein, 2019. "Hybrid algorithm for optimal operation of hybrid energy systems in electric ferries," Energy, Elsevier, vol. 187(C).
    16. Bayrak, Gökay & Kabalci, Ersan, 2016. "Implementation of a new remote islanding detection method for wind–solar hybrid power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1-15.
    17. Xu, Xiao & Hu, Weihao & Cao, Di & Liu, Wen & Huang, Qi & Hu, Yanting & Chen, Zhe, 2021. "Enhanced design of an offgrid PV-battery-methanation hybrid energy system for power/gas supply," Renewable Energy, Elsevier, vol. 167(C), pages 440-456.
    18. Mito, Mohamed T. & Ma, Xianghong & Albuflasa, Hanan & Davies, Philip A., 2019. "Reverse osmosis (RO) membrane desalination driven by wind and solar photovoltaic (PV) energy: State of the art and challenges for large-scale implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 669-685.
    19. Ho, Lip-Wah & Lie, Tek-Tjing & Leong, Paul TM & Clear, Tony, 2018. "Developing offshore wind farm siting criteria by using an international Delphi method," Energy Policy, Elsevier, vol. 113(C), pages 53-67.
    20. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:76:y:2017:i:c:p:391-406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.