IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v28y2013icp597-615.html
   My bibliography  Save this article

An analytical literature review of stand-alone wind energy conversion systems from generator viewpoint

Author

Listed:
  • Alnasir, Zuher
  • Kazerani, Mehrdad

Abstract

The purpose of this paper is to provide an analytical review of wind turbine-generator systems for stand-alone applications. The review focuses on variable-speed wind turbines, as the future trend in wind energy conversion, in contrast with the traditional fixed-speed wind turbines. Indirect-drive and direct-drive turbines are comparatively evaluated. The concerns about long-term availability of permanent magnet materials and its impact on the future of permanent magnet synchronous generator are addressed. Having cost and efficiency in mind, viability of indirect-drive squirrel cage induction generator for stand-alone wind energy conversion systems is discussed. As an efficient induction machine design, permanent magnet induction generator is also examined. Finally, the potential of using switched reluctance machine, as a generator, in a direct-drive wind turbine system is investigated.

Suggested Citation

  • Alnasir, Zuher & Kazerani, Mehrdad, 2013. "An analytical literature review of stand-alone wind energy conversion systems from generator viewpoint," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 597-615.
  • Handle: RePEc:eee:rensus:v:28:y:2013:i:c:p:597-615
    DOI: 10.1016/j.rser.2013.08.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113005674
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.08.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Booker, J.D. & Mellor, P.H. & Wrobel, R. & Drury, D., 2010. "A compact, high efficiency contra-rotating generator suitable for wind turbines in the urban environment," Renewable Energy, Elsevier, vol. 35(9), pages 2027-2033.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Casper J. J. Labuschagne & Maarten J. Kamper, 2022. "On the Design and Topology Selection of Permanent Magnet Synchronous Generators for Natural Impedance Matching in Small-Scale Uncontrolled Passive Wind Generator Systems," Energies, MDPI, vol. 15(5), pages 1-23, March.
    2. Saleh H. Al-Senaidi & Abdulrahman I. Alolah & Majeed A. Alkanhal, 2018. "Magnetization-Dependent Core-Loss Model in a Three-Phase Self-Excited Induction Generator," Energies, MDPI, vol. 11(11), pages 1-12, November.
    3. Carunaiselvane, C. & Chelliah, Thanga Raj, 2017. "Present trends and future prospects of asynchronous machines in renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1028-1041.
    4. Serov, A.F. & Nazarov, A.D. & Mamonov, V.N. & Terekhov, V.I., 2019. "Experimental investigation of energy dissipation in the multi-cylinder Couette-Taylor system with independently rotating cylinders," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Abdoune, Fateh & Aouzellag, Djamal & Ghedamsi, Kaci, 2016. "Terminal voltage build-up and control of a DFIG based stand-alone wind energy conversion system," Renewable Energy, Elsevier, vol. 97(C), pages 468-480.
    6. Andrés Peña Asensio & Santiago Arnaltes Gómez & Jose Luis Rodriguez-Amenedo & Manuel García Plaza & Joaquín Eloy-García Carrasco & Jaime Manuel Alonso-Martínez de las Morenas, 2018. "A Voltage and Frequency Control Strategy for Stand-Alone Full Converter Wind Energy Conversion Systems," Energies, MDPI, vol. 11(3), pages 1-19, February.
    7. Li, Yan & Dong, Yuxing & Zhang, Qiang & Cao, Lihua, 2014. "Design, analysis and implementation of a constant-voltage power generation system based on a novel memory machine," Energy, Elsevier, vol. 76(C), pages 875-883.
    8. K. Padmanathan & N. Kamalakannan & P. Sanjeevikumar & F. Blaabjerg & J. B. Holm-Nielsen & G. Uma & R. Arul & R. Rajesh & A. Srinivasan & J. Baskaran, 2019. "Conceptual Framework of Antecedents to Trends on Permanent Magnet Synchronous Generators for Wind Energy Conversion Systems," Energies, MDPI, vol. 12(13), pages 1-39, July.
    9. Daniel Akinyele & Juri Belikov & Yoash Levron, 2018. "Challenges of Microgrids in Remote Communities: A STEEP Model Application," Energies, MDPI, vol. 11(2), pages 1-35, February.
    10. de Freitas, Tiara R.S. & Menegáz, Paulo J.M. & Simonetti, Domingos S.L., 2016. "Rectifier topologies for permanent magnet synchronous generator on wind energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1334-1344.
    11. Mesbahi, Tedjani & Ouari, Ahmed & Ghennam, Tarak & Berkouk, El Madjid & Rizoug, Nassim & Mesbahi, Nadhir & Meradji, Moudrik, 2014. "A stand-alone wind power supply with a Li-ion battery energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 204-213.
    12. Sultana, W. Razia & Sahoo, Sarat Kumar & Sukchai, Sukruedee & Yamuna, S. & Venkatesh, D., 2017. "A review on state of art development of model predictive control for renewable energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 391-406.
    13. Tareen, Wajahat Ullah & Mekhilef, Saad & Seyedmahmoudian, Mehdi & Horan, Ben, 2017. "Active power filter (APF) for mitigation of power quality issues in grid integration of wind and photovoltaic energy conversion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 635-655.
    14. Alnasir, Zuher & Kazerani, Mehrdad, 2016. "A small-scale standalone wind energy conversion system featuring SCIG, CSI and a novel storage integration scheme," Renewable Energy, Elsevier, vol. 89(C), pages 360-370.
    15. Shrabani Sahu & Sasmita Behera, 2022. "A review on modern control applications in wind energy conversion system," Energy & Environment, , vol. 33(2), pages 223-262, March.
    16. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    17. Mousavi, Yashar & Bevan, Geraint & Kucukdemiral, Ibrahim Beklan & Fekih, Afef, 2022. "Sliding mode control of wind energy conversion systems: Trends and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    18. Zhou, Daqing & Deng, Zhiqun (Daniel), 2017. "Ultra-low-head hydroelectric technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 23-30.
    19. Jin, Jingliang & Zhou, Dequn & Zhou, Peng & Miao, Zhuang, 2014. "Environmental/economic power dispatch with wind power," Renewable Energy, Elsevier, vol. 71(C), pages 234-242.
    20. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Adetokun, B.B., 2017. "Optimal capacitance selection for a wind-driven self-excited reluctance generator under varying wind speed and load conditions," Applied Energy, Elsevier, vol. 190(C), pages 339-353.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michał Pacholczyk & Dariusz Karkosiński, 2020. "Parametric Study on a Performance of a Small Counter-Rotating Wind Turbine," Energies, MDPI, vol. 13(15), pages 1-17, July.
    2. Lidong Zhang & Kaiqi Zhu & Junwei Zhong & Ling Zhang & Tieliu Jiang & Shaohua Li & Zhongbin Zhang, 2018. "Numerical Investigations of the Effects of the Rotating Shaft and Optimization of Urban Vertical Axis Wind Turbines," Energies, MDPI, vol. 11(7), pages 1-25, July.
    3. Didane, Djamal Hissein & Rosly, Nurhayati & Zulkafli, Mohd Fadhli & Shamsudin, Syariful Syafiq, 2018. "Performance evaluation of a novel vertical axis wind turbine with coaxial contra-rotating concept," Renewable Energy, Elsevier, vol. 115(C), pages 353-361.
    4. Manganhar, Abdul Latif & Rajpar, Altaf Hussain & Luhur, Muhammad Ramzan & Samo, Saleem Raza & Manganhar, Mehtab, 2019. "Performance analysis of a savonius vertical axis wind turbine integrated with wind accelerating and guiding rotor house," Renewable Energy, Elsevier, vol. 136(C), pages 512-520.
    5. Mircea Neagoe & Radu Saulescu & Codruta Jaliu, 2019. "Design and Simulation of a 1 DOF Planetary Speed Increaser for Counter-Rotating Wind Turbines with Counter-Rotating Electric Generators," Energies, MDPI, vol. 12(9), pages 1-19, May.
    6. Nikolić, Vlastimir & Petković, Dalibor & Shamshirband, Shahaboddin & Ćojbašić, Žarko, 2015. "Adaptive neuro-fuzzy estimation of diffuser effects on wind turbine performance," Energy, Elsevier, vol. 89(C), pages 324-333.
    7. Radu Saulescu & Mircea Neagoe & Codruta Jaliu, 2018. "Conceptual Synthesis of Speed Increasers for Wind Turbine Conversion Systems," Energies, MDPI, vol. 11(9), pages 1-33, August.
    8. Mircea Neagoe & Radu Saulescu & Codruta Jaliu & Petru A. Simionescu, 2020. "A Generalized Approach to the Steady-State Efficiency Analysis of Torque-Adding Transmissions Used in Renewable Energy Systems," Energies, MDPI, vol. 13(17), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:28:y:2013:i:c:p:597-615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.