IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v62y2014icp313-318.html
   My bibliography  Save this article

Technical, economic and environmental assessment of household biogas digesters for rural communities

Author

Listed:
  • Pérez, Irene
  • Garfí, Marianna
  • Cadena, Erasmo
  • Ferrer, Ivet

Abstract

This study was carried out in response to the growing interest on household biogas digesters in Latin America, particularly in rural Andean communities. The aim was to compare the fixed dome and plastic tubular digester in terms of biogas production, cost and environmental impact, using the life cycle assessment methodology. Design and operational parameters, construction materials and implementation costs were based on our previous research and literature results for plastic tubular and fixed dome digesters, respectively. According to this analysis, the main advantage of the plastic tubular digester was its ease of implementation and handling, and lower investment cost compared to the fixed dome digester, which appeared to be more environmentally friendly.

Suggested Citation

  • Pérez, Irene & Garfí, Marianna & Cadena, Erasmo & Ferrer, Ivet, 2014. "Technical, economic and environmental assessment of household biogas digesters for rural communities," Renewable Energy, Elsevier, vol. 62(C), pages 313-318.
  • Handle: RePEc:eee:renene:v:62:y:2014:i:c:p:313-318
    DOI: 10.1016/j.renene.2013.07.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113003625
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.07.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Ling & Zhao, Lixin & Ren, Changshan & Wang, Fei, 2012. "The progress and prospects of rural biogas production in China," Energy Policy, Elsevier, vol. 51(C), pages 58-63.
    2. Ni, J.-Q. & Naveau, H. & Nyns, E.-J., 1993. "Biogas: exploitation of a renewable energy in Latin America," Renewable Energy, Elsevier, vol. 3(6), pages 763-779.
    3. Abbasi, Tasneem & Tauseef, S.M. & Abbasi, S.A., 2012. "Anaerobic digestion for global warming control and energy generation—An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3228-3242.
    4. Arthur, Richard & Baidoo, Martina Francisca & Antwi, Edward, 2011. "Biogas as a potential renewable energy source: A Ghanaian case study," Renewable Energy, Elsevier, vol. 36(5), pages 1510-1516.
    5. Nzila, Charles & Dewulf, Jo & Spanjers, Henri & Tuigong, David & Kiriamiti, Henry & van Langenhove, Herman, 2012. "Multi criteria sustainability assessment of biogas production in Kenya," Applied Energy, Elsevier, vol. 93(C), pages 496-506.
    6. Pei-dong, Zhang & Guomei, Jia & Gang, Wang, 2007. "Contribution to emission reduction of CO2 and SO2 by household biogas construction in rural China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1903-1912, October.
    7. Yu, Liu & Yaoqiu, Kuang & Ningsheng, Huang & Zhifeng, Wu & Lianzhong, Xu, 2008. "Popularizing household-scale biogas digesters for rural sustainable energy development and greenhouse gas mitigation," Renewable Energy, Elsevier, vol. 33(9), pages 2027-2035.
    8. Katuwal, Hari & Bohara, Alok K., 2009. "Biogas: A promising renewable technology and its impact on rural households in Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2668-2674, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Tao & Khoshnevisan, Benyamin & Huang, Ruyi & Chen, Qiu & Mei, Zili & Pan, Junting & Liu, Hongbin, 2020. "Analysis of revolution in decentralized biogas facilities caused by transition in Chinese rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Díaz-Trujillo, Luis Alberto & Nápoles-Rivera, Fabricio, 2019. "Optimization of biogas supply chain in Mexico considering economic and environmental aspects," Renewable Energy, Elsevier, vol. 139(C), pages 1227-1240.
    3. Aberilla, Jhud Mikhail & Gallego-Schmid, Alejandro & Azapagic, Adisa, 2019. "Environmental sustainability of small-scale biomass power technologies for agricultural communities in developing countries," Renewable Energy, Elsevier, vol. 141(C), pages 493-506.
    4. Yao, Yao & Huang, Gordon & An, Chunjiang & Chen, Xiujuan & Zhang, Peng & Xin, Xiaying & Jian Shen, & Agnew, Joy, 2020. "Anaerobic digestion of livestock manure in cold regions: Technological advancements and global impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Sovacool, Benjamin K. & Kryman, Matthew & Smith, Taylor, 2015. "Scaling and commercializing mobile biogas systems in Kenya: A qualitative pilot study," Renewable Energy, Elsevier, vol. 76(C), pages 115-125.
    6. Bożym, Marta & Florczak, Iwona & Zdanowska, Paulina & Wojdalski, Janusz & Klimkiewicz, Marek, 2015. "An analysis of metal concentrations in food wastes for biogas production," Renewable Energy, Elsevier, vol. 77(C), pages 467-472.
    7. Frattini, D. & Cinti, G. & Bidini, G. & Desideri, U. & Cioffi, R. & Jannelli, E., 2016. "A system approach in energy evaluation of different renewable energies sources integration in ammonia production plants," Renewable Energy, Elsevier, vol. 99(C), pages 472-482.
    8. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Huba, Elisabeth-Maria & Gao, Ruiling & Wang, Xuemei, 2014. "Development and application of prefabricated biogas digesters in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 387-400.
    9. Zhang, Weishi & Wang, Can & Zhang, Long & Xu, Ying & Cui, Yuanzheng & Lu, Zifeng & Streets, David G., 2018. "Evaluation of the performance of distributed and centralized biomass technologies in rural China," Renewable Energy, Elsevier, vol. 125(C), pages 445-455.
    10. Murillo-Alvarado, Pascual Eduardo & Ponce-Ortega, José María, 2022. "An optimization approach to increase the human development index through a biogas supply chain in a developing region," Renewable Energy, Elsevier, vol. 190(C), pages 347-357.
    11. Lohani, Sunil Prasad & Pokhrel, Dhiraj & Bhattarai, Sankalpa & Pokhrel, Amod K., 2022. "Technical assessment of installed domestic biogas plants in Kavre, Nepal," Renewable Energy, Elsevier, vol. 181(C), pages 1250-1257.
    12. Samatcha Krungkaew & Benedikt Hülsemann & Kanokwan Kingphadung & Busarakorn Mahayothee & Hans Oechsner & Joachim Müller, 2023. "New Sustainable Banana Value Chain: Waste Valuation toward a Circular Bioeconomy," Energies, MDPI, vol. 16(8), pages 1-20, April.
    13. Martí-Herrero, Jaime & Chipana, Maria & Cuevas, Carlos & Paco, Gabriel & Serrano, Victor & Zymla, Bernhard & Heising, Klas & Sologuren, Jaime & Gamarra, Alba, 2014. "Low cost tubular digesters as appropriate technology for widespread application: Results and lessons learned from Bolivia," Renewable Energy, Elsevier, vol. 71(C), pages 156-165.
    14. Stephen Tangwe & Patrick Mukumba & Golden Makaka, 2022. "Design and Employing of a Non-Linear Response Surface Model to Predict the Microbial Loads in Anaerobic Digestion of Cow Manure: Batch Balloon Digester," Sustainability, MDPI, vol. 14(20), pages 1-25, October.
    15. Jun Hou & Weifeng Zhang & Pei Wang & Zhengxia Dou & Liwei Gao & David Styles, 2017. "Greenhouse Gas Mitigation of Rural Household Biogas Systems in China: A Life Cycle Assessment," Energies, MDPI, vol. 10(2), pages 1-14, February.
    16. Garfí, Marianna & Martí-Herrero, Jaime & Garwood, Anna & Ferrer, Ivet, 2016. "Household anaerobic digesters for biogas production in Latin America: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 599-614.
    17. Abiodun O. Jegede & Grietje Zeeman & Harry Bruning, 2019. "Effect of Mixing Regimes on Cow Manure Digestion in Impeller Mixed, Unmixed and Chinese Dome Digesters," Energies, MDPI, vol. 12(13), pages 1-14, July.
    18. Kristjanpoller, Fredy & Crespo, Adolfo & Barberá, Luis & Viveros, Pablo, 2017. "Biomethanation plant assessment based on reliability impact on operational effectiveness," Renewable Energy, Elsevier, vol. 101(C), pages 301-310.
    19. Tavera-Ruiz, C. & Martí-Herrero, J. & Mendieta, O. & Jaimes-Estévez, J. & Gauthier-Maradei, P. & Azimov, U. & Escalante, H. & Castro, L., 2023. "Current understanding and perspectives on anaerobic digestion in developing countries: Colombia case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    20. Ghaem Sigarchian, Sara & Paleta, Rita & Malmquist, Anders & Pina, André, 2015. "Feasibility study of using a biogas engine as backup in a decentralized hybrid (PV/wind/battery) power generation system – Case study Kenya," Energy, Elsevier, vol. 90(P2), pages 1830-1841.
    21. Ortiz, Willington & Terrapon-Pfaff, Julia & Dienst, Carmen, 2017. "Understanding the diffusion of domestic biogas technologies. Systematic conceptualisation of existing evidence from developing and emerging countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1287-1299.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Neupane, Kalidas & Wauthelet, Marc & Huba, Elisabeth-Maria, 2014. "Application of fault tree approach for technical assessment of small-sized biogas systems in Nepal," Applied Energy, Elsevier, vol. 113(C), pages 1372-1381.
    2. Rupf, Gloria V. & Bahri, Parisa A. & de Boer, Karne & McHenry, Mark P., 2015. "Barriers and opportunities of biogas dissemination in Sub-Saharan Africa and lessons learned from Rwanda, Tanzania, China, India, and Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 468-476.
    3. Garfí, Marianna & Martí-Herrero, Jaime & Garwood, Anna & Ferrer, Ivet, 2016. "Household anaerobic digesters for biogas production in Latin America: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 599-614.
    4. Wakeel, Muhammad & Hayat, Tasawer & Shah, Noor Samad & Iqbal, Jibran & Haq Khan, Zia Ul & Shah, Ghulam Mustafa & Rasool, Atta, 2023. "Biogas Energy Resources in Pakistan Status, Potential, and Barriers," Utilities Policy, Elsevier, vol. 84(C).
    5. Shane, Agabu & Gheewala, Shabbir H. & Kafwembe, Young, 2017. "Urban commercial biogas power plant model for Zambian towns," Renewable Energy, Elsevier, vol. 103(C), pages 1-14.
    6. Khan, Ershad Ullah & Martin, Andrew R., 2016. "Review of biogas digester technology in rural Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 247-259.
    7. Ortiz, Willington & Terrapon-Pfaff, Julia & Dienst, Carmen, 2017. "Understanding the diffusion of domestic biogas technologies. Systematic conceptualisation of existing evidence from developing and emerging countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1287-1299.
    8. Yasar, Abdullah & Nazir, Saba & Rasheed, Rizwan & Tabinda, Amtul Bari & Nazar, Masooma, 2017. "Economic review of different designs of biogas plants at household level in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 221-229.
    9. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Huba, Elisabeth-Maria & Gao, Ruiling & Wang, Xuemei, 2014. "Development and application of prefabricated biogas digesters in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 387-400.
    10. Ni, Ji-Qin, 2024. "A review of household and industrial anaerobic digestion in Asia: Biogas development and safety incidents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    11. Roubík, Hynek & Mazancová, Jana & Phung, Le Dinh & Banout, Jan, 2018. "Current approach to manure management for small-scale Southeast Asian farmers - Using Vietnamese biogas and non-biogas farms as an example," Renewable Energy, Elsevier, vol. 115(C), pages 362-370.
    12. van Groenendaal, Willem & Gehua, Wang, 2010. "Microanalysis of the benefits of China's family-size bio-digesters," Energy, Elsevier, vol. 35(11), pages 4457-4466.
    13. Surendra, K.C. & Takara, Devin & Hashimoto, Andrew G. & Khanal, Samir Kumar, 2014. "Biogas as a sustainable energy source for developing countries: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 846-859.
    14. Wu, X.F. & Chen, G.Q. & Wu, X.D. & Yang, Q. & Alsaedi, A. & Hayat, T. & Ahmad, B., 2015. "Renewability and sustainability of biogas system: Cosmic exergy based assessment for a case in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1509-1524.
    15. Martí-Herrero, Jaime & Chipana, Maria & Cuevas, Carlos & Paco, Gabriel & Serrano, Victor & Zymla, Bernhard & Heising, Klas & Sologuren, Jaime & Gamarra, Alba, 2014. "Low cost tubular digesters as appropriate technology for widespread application: Results and lessons learned from Bolivia," Renewable Energy, Elsevier, vol. 71(C), pages 156-165.
    16. Bedi, A.S. & Pellegrini, L. & Tasciotti, L., 2014. "Caught between necessity and feasibility," ISS Working Papers - General Series 51698, International Institute of Social Studies of Erasmus University Rotterdam (ISS), The Hague.
    17. Neshat, Soheil A. & Mohammadi, Maedeh & Najafpour, Ghasem D. & Lahijani, Pooya, 2017. "Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 308-322.
    18. Rupf, Gloria V. & Bahri, Parisa A. & de Boer, Karne & McHenry, Mark P., 2016. "Broadening the potential of biogas in Sub-Saharan Africa: An assessment of feasible technologies and feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 556-571.
    19. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Huba, Elisabeth-Maria, 2013. "A review of prefabricated biogas digesters in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 738-748.
    20. Yasar, Abdullah & Nazir, Saba & Tabinda, Amtul Bari & Nazar, Masooma & Rasheed, Rizwan & Afzaal, Muhammad, 2017. "Socio-economic, health and agriculture benefits of rural household biogas plants in energy scarce developing countries: A case study from Pakistan," Renewable Energy, Elsevier, vol. 108(C), pages 19-25.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:62:y:2014:i:c:p:313-318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.