IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v71y2014icp156-165.html
   My bibliography  Save this article

Low cost tubular digesters as appropriate technology for widespread application: Results and lessons learned from Bolivia

Author

Listed:
  • Martí-Herrero, Jaime
  • Chipana, Maria
  • Cuevas, Carlos
  • Paco, Gabriel
  • Serrano, Victor
  • Zymla, Bernhard
  • Heising, Klas
  • Sologuren, Jaime
  • Gamarra, Alba

Abstract

This paper presents the results and lessons learned from four and a half years of implementing low cost tubular digesters in Bolivia. The selection of this technology is justified in comparison with other popular technologies such as fixed dome or floating drum digesters. The highlighted weakness of the tubular model (its short life expectancy), is transformed into a strength, making the low cost tubular digester an appropriate technology for widespread application. The experiences in Bolivia show that the success of biogas programs depend more on socio-economic factors than on the validated technology selected, suggesting that local circumstances are a critical, and often underestimated, factor to be taken into consideration in the praxis. Finally, some testimonies of the use of biol (bio-slurry or effluent) are reported, identifying the high potential of this anaerobic digestion product that provides a food sovereignty approach, reduced expansion of the agricultural frontier, increased agricultural productivity and hence family income, that other household energizing systems do not have. A brief report of lessons learned is also included.

Suggested Citation

  • Martí-Herrero, Jaime & Chipana, Maria & Cuevas, Carlos & Paco, Gabriel & Serrano, Victor & Zymla, Bernhard & Heising, Klas & Sologuren, Jaime & Gamarra, Alba, 2014. "Low cost tubular digesters as appropriate technology for widespread application: Results and lessons learned from Bolivia," Renewable Energy, Elsevier, vol. 71(C), pages 156-165.
  • Handle: RePEc:eee:renene:v:71:y:2014:i:c:p:156-165
    DOI: 10.1016/j.renene.2014.05.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114002973
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.05.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Walekhwa, Peter N. & Mugisha, Johnny & Drake, Lars, 2009. "Biogas energy from family-sized digesters in Uganda: Critical factors and policy implications," Energy Policy, Elsevier, vol. 37(7), pages 2754-2762, July.
    2. Chen, Ling & Zhao, Lixin & Ren, Changshan & Wang, Fei, 2012. "The progress and prospects of rural biogas production in China," Energy Policy, Elsevier, vol. 51(C), pages 58-63.
    3. Arthur, Richard & Baidoo, Martina Francisca & Antwi, Edward, 2011. "Biogas as a potential renewable energy source: A Ghanaian case study," Renewable Energy, Elsevier, vol. 36(5), pages 1510-1516.
    4. Pérez, Irene & Garfí, Marianna & Cadena, Erasmo & Ferrer, Ivet, 2014. "Technical, economic and environmental assessment of household biogas digesters for rural communities," Renewable Energy, Elsevier, vol. 62(C), pages 313-318.
    5. Ghimire, Prakash C., 2013. "SNV supported domestic biogas programmes in Asia and Africa," Renewable Energy, Elsevier, vol. 49(C), pages 90-94.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juanpera, M. & Ferrer-Martí, L. & Diez-Montero, R. & Ferrer, I. & Castro, L. & Escalante, H. & Garfí, M., 2022. "A robust multicriteria analysis for the post-treatment of digestate from low-tech digesters. Boosting the circular bioeconomy of small-scale farms in Colombia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    2. Yao, Yao & Huang, Gordon & An, Chunjiang & Chen, Xiujuan & Zhang, Peng & Xin, Xiaying & Jian Shen, & Agnew, Joy, 2020. "Anaerobic digestion of livestock manure in cold regions: Technological advancements and global impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Martí-Herrero, J. & Soria-Castellón, G. & Diaz-de-Basurto, A. & Alvarez, R. & Chemisana, D., 2019. "Biogas from a full scale digester operated in psychrophilic conditions and fed only with fruit and vegetable waste," Renewable Energy, Elsevier, vol. 133(C), pages 676-684.
    4. Ferrer-Martí, Laia & Ferrer, Ivet & Sánchez, Elena & Garfí, Marianna, 2018. "A multi-criteria decision support tool for the assessment of household biogas digester programmes in rural areas. A case study in Peru," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 74-83.
    5. Junmin Lee & Keungoui Kim & Hyunha Shin & Junseok Hwang, 2018. "Acceptance Factors of Appropriate Technology: Case of Water Purification Systems in Binh Dinh, Vietnam," Sustainability, MDPI, vol. 10(7), pages 1-20, June.
    6. Alberto Regattieri & Marco Bortolini & Emilio Ferrari & Mauro Gamberi & Francesco Piana, 2018. "Biogas Micro-Production from Human Organic Waste—A Research Proposal," Sustainability, MDPI, vol. 10(2), pages 1-14, January.
    7. Rupf, Gloria V. & Bahri, Parisa A. & de Boer, Karne & McHenry, Mark P., 2016. "Broadening the potential of biogas in Sub-Saharan Africa: An assessment of feasible technologies and feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 556-571.
    8. Yasar, Abdullah & Nazir, Saba & Rasheed, Rizwan & Tabinda, Amtul Bari & Nazar, Masooma, 2017. "Economic review of different designs of biogas plants at household level in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 221-229.
    9. Jaime Jaimes-Estévez & German Zafra & Jaime Martí-Herrero & Guillermo Pelaz & Antonio Morán & Alejandra Puentes & Christian Gomez & Liliana del Pilar Castro & Humberto Escalante Hernández, 2020. "Psychrophilic Full Scale Tubular Digester Operating over Eight Years: Complete Performance Evaluation and Microbiological Population," Energies, MDPI, vol. 14(1), pages 1-17, December.
    10. Emma Lindkvist & Maria T. Johansson & Jakob Rosenqvist, 2017. "Methodology for Analysing Energy Demand in Biogas Production Plants—A Comparative Study of Two Biogas Plants," Energies, MDPI, vol. 10(11), pages 1-20, November.
    11. Noori M. Cata Saady & Daniel I. Massé, 2015. "Impact of Organic Loading Rate on Psychrophilic Anaerobic Digestion of Solid Dairy Manure," Energies, MDPI, vol. 8(3), pages 1-18, March.
    12. Giovanni Vinti & Mentore Vaccari, 2022. "Solid Waste Management in Rural Communities of Developing Countries: An Overview of Challenges and Opportunities," Clean Technol., MDPI, vol. 4(4), pages 1-14, November.
    13. Dávid Nagy & Péter Balogh & Zoltán Gabnai & József Popp & Judit Oláh & Attila Bai, 2018. "Economic Analysis of Pellet Production in Co-Digestion Biogas Plants," Energies, MDPI, vol. 11(5), pages 1-21, May.
    14. Garfí, Marianna & Martí-Herrero, Jaime & Garwood, Anna & Ferrer, Ivet, 2016. "Household anaerobic digesters for biogas production in Latin America: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 599-614.
    15. Tavera-Ruiz, C. & Martí-Herrero, J. & Mendieta, O. & Jaimes-Estévez, J. & Gauthier-Maradei, P. & Azimov, U. & Escalante, H. & Castro, L., 2023. "Current understanding and perspectives on anaerobic digestion in developing countries: Colombia case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    16. Ortiz, Willington & Terrapon-Pfaff, Julia & Dienst, Carmen, 2017. "Understanding the diffusion of domestic biogas technologies. Systematic conceptualisation of existing evidence from developing and emerging countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1287-1299.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rupf, Gloria V. & Bahri, Parisa A. & de Boer, Karne & McHenry, Mark P., 2015. "Barriers and opportunities of biogas dissemination in Sub-Saharan Africa and lessons learned from Rwanda, Tanzania, China, India, and Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 468-476.
    2. Abiodun O. Jegede & Grietje Zeeman & Harry Bruning, 2019. "Effect of Mixing Regimes on Cow Manure Digestion in Impeller Mixed, Unmixed and Chinese Dome Digesters," Energies, MDPI, vol. 12(13), pages 1-14, July.
    3. Ortiz, Willington & Terrapon-Pfaff, Julia & Dienst, Carmen, 2017. "Understanding the diffusion of domestic biogas technologies. Systematic conceptualisation of existing evidence from developing and emerging countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1287-1299.
    4. Garfí, Marianna & Martí-Herrero, Jaime & Garwood, Anna & Ferrer, Ivet, 2016. "Household anaerobic digesters for biogas production in Latin America: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 599-614.
    5. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Huba, Elisabeth-Maria & Gao, Ruiling & Wang, Xuemei, 2014. "Development and application of prefabricated biogas digesters in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 387-400.
    6. Wakeel, Muhammad & Hayat, Tasawer & Shah, Noor Samad & Iqbal, Jibran & Haq Khan, Zia Ul & Shah, Ghulam Mustafa & Rasool, Atta, 2023. "Biogas Energy Resources in Pakistan Status, Potential, and Barriers," Utilities Policy, Elsevier, vol. 84(C).
    7. Mengistu, Mulu Getachew & Simane, Belay & Eshete, Getachew & Workneh, Tilahun Seyoum, 2016. "Factors affecting households' decisions in biogas technology adoption, the case of Ofla and Mecha Districts, northern Ethiopia," Renewable Energy, Elsevier, vol. 93(C), pages 215-227.
    8. Sarker, Swati Anindita & Wang, Shouyang & Adnan, K.M. Mehedi & Sattar, M. Nahid, 2020. "Economic feasibility and determinants of biogas technology adoption: Evidence from Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    9. Mukeshimana, Marie Claire & Zhao, Zhen-Yu & Ahmad, Munir & Irfan, Muhammad, 2021. "Analysis on barriers to biogas dissemination in Rwanda: AHP approach," Renewable Energy, Elsevier, vol. 163(C), pages 1127-1137.
    10. Sun, Dingqiang & Bai, Junfei & Qiu, Huanguang & Cai, Yaqing, 2014. "Impact of government subsidies on household biogas use in rural China," Energy Policy, Elsevier, vol. 73(C), pages 748-756.
    11. Francis Kemausuor & Muyiwa S. Adaramola & John Morken, 2018. "A Review of Commercial Biogas Systems and Lessons for Africa," Energies, MDPI, vol. 11(11), pages 1-21, November.
    12. Syed M Amir & Yonggong Liu & Ashfaq A Shah & Umer Khayyam & Zafar Mahmood, 2020. "Empirical study on influencing factors of biogas technology adoption in Khyber Pakhtunkhwa, Pakistan," Energy & Environment, , vol. 31(2), pages 308-329, March.
    13. Yasmin, Nazia & Grundmann, Philipp, 2019. "Adoption and diffusion of renewable energy – The case of biogas as alternative fuel for cooking in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 255-264.
    14. Roopnarain, Ashira & Adeleke, Rasheed, 2017. "Current status, hurdles and future prospects of biogas digestion technology in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1162-1179.
    15. Pérez, Irene & Garfí, Marianna & Cadena, Erasmo & Ferrer, Ivet, 2014. "Technical, economic and environmental assessment of household biogas digesters for rural communities," Renewable Energy, Elsevier, vol. 62(C), pages 313-318.
    16. Ahmad Romadhoni Surya Putra, R. & Liu, Zhen & Lund, Mogens, 2017. "The impact of biogas technology adoption for farm households – Empirical evidence from mixed crop and livestock farming systems in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1371-1378.
    17. Solomon E. Uhunamure & Nthaduleni S. Nethengwe & David Tinarwo, 2021. "Development of a Comprehensive Conceptual Framework for Biogas Technology Adoption in South Africa," Resources, MDPI, vol. 10(8), pages 1-21, July.
    18. Phiona Jackline Mukisa & Chama Theodore Ketuama & Hynek Roubík, 2022. "Biogas in Uganda and the Sustainable Development Goals: A Comparative Cross-Sectional Fuel Analysis of Biogas and Firewood," Agriculture, MDPI, vol. 12(9), pages 1-10, September.
    19. Shane, Agabu & Gheewala, Shabbir H. & Kafwembe, Young, 2017. "Urban commercial biogas power plant model for Zambian towns," Renewable Energy, Elsevier, vol. 103(C), pages 1-14.
    20. Lei Zheng & Jingang Chen & Mingyue Zhao & Shikun Cheng & Li-Pang Wang & Heinz-Peter Mang & Zifu Li, 2020. "What Could China Give to and Take from Other Countries in Terms of the Development of the Biogas Industry?," Sustainability, MDPI, vol. 12(4), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:71:y:2014:i:c:p:156-165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.