IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v68y2017ip1p623-637.html
   My bibliography  Save this article

Advances in genetic improvement of Camelina sativa for biofuel and industrial bio-products

Author

Listed:
  • Sainger, Manish
  • Jaiwal, Anjali
  • Sainger, Poonam Ahlawat
  • Chaudhary, Darshna
  • Jaiwal, Ranjana
  • Jaiwal, Pawan K.

Abstract

Ever-increasing global energy demand, diminishing fossil fuel reserves and environmental concerns have forced to look for renewable and sustainable alternative energy sources preferentially from non-food crops. Camelina being a short-duration, low-cost, non-food oilseed crop with high content of oil (45%) rich in unsaturated fatty acids and capable of growing in marginal lands has emerged as a potential alternative for biofuel (with low carbon emission) and industrial bio-products. However, the fatty acid profile needs to be refined to make it more efficient for biodiesel and bio-products. Attempts to improve crop yield, oil content and composition through conventional and mutation breeding have been limited due to inadequate genetic diversity and availability of mutants. Simple and easy transformation and recent upsurge in ‘omics’ data (trancriptomics and genomics) has resulted in better understanding of lipid biosynthesis and its regulation, and thus has made it possible to produce unusual lipids with modified fatty acids for new functionalities. However, further improvement is still awaited for carbon assimilation efficiency, resistance to various abiotic and biotic stresses, seed yield, oil content and composition. This review extensively analyses the recent advances and challenges in using molecular markers, genomics, transcriptomics, miRNAs and transgenesis for improvement in biotic and abiotic stresses, carbon assimilation capabilities, seed yield, oil content and composition in camelina for biodiesel fuel properties, nutrition and high value-added industrial products like bioplastics, wax esters and terpenoids.

Suggested Citation

  • Sainger, Manish & Jaiwal, Anjali & Sainger, Poonam Ahlawat & Chaudhary, Darshna & Jaiwal, Ranjana & Jaiwal, Pawan K., 2017. "Advances in genetic improvement of Camelina sativa for biofuel and industrial bio-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 623-637.
  • Handle: RePEc:eee:rensus:v:68:y:2017:i:p1:p:623-637
    DOI: 10.1016/j.rser.2016.10.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116306724
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.10.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sateesh Kagale & Chushin Koh & John Nixon & Venkatesh Bollina & Wayne E. Clarke & Reetu Tuteja & Charles Spillane & Stephen J. Robinson & Matthew G. Links & Carling Clarke & Erin E. Higgins & Terry Hu, 2014. "The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure," Nature Communications, Nature, vol. 5(1), pages 1-11, September.
    2. Krohn, Brian J. & Fripp, Matthias, 2012. "A life cycle assessment of biodiesel derived from the “niche filling” energy crop camelina in the USA," Applied Energy, Elsevier, vol. 92(C), pages 92-98.
    3. Chuck, Christopher J. & Donnelly, Joseph, 2014. "The compatibility of potential bioderived fuels with Jet A-1 aviation kerosene," Applied Energy, Elsevier, vol. 118(C), pages 83-91.
    4. Singh, S.P. & Singh, Dipti, 2010. "Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 200-216, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martinez, Sara & Alvarez, Sergio & Capuano, Anibal & Delgado, Maria del Mar, 2020. "Environmental performance of animal feed production from Camelina sativa (L.) Crantz: Influence of crop management practices under Mediterranean conditions," Agricultural Systems, Elsevier, vol. 177(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Liuqing & Takase, Mohammed & Zhang, Min & Zhao, Ting & Wu, Xiangyang, 2014. "Potential non-edible oil feedstock for biodiesel production in Africa: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 461-477.
    2. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.
    3. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2013. "Combustion performance and emission characteristics study of pine oil in a diesel engine," Energy, Elsevier, vol. 57(C), pages 344-351.
    4. Li, Zhuoxue & Yang, Depo & Huang, Miaoling & Hu, Xinjun & Shen, Jiangang & Zhao, Zhimin & Chen, Jianping, 2012. "Chrysomya megacephala (Fabricius) larvae: A new biodiesel resource," Applied Energy, Elsevier, vol. 94(C), pages 349-354.
    5. Singh, Paramvir & Varun, & Chauhan, S.R., 2016. "Carbonyl and aromatic hydrocarbon emissions from diesel engine exhaust using different feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 269-291.
    6. Ambat, Indu & Srivastava, Varsha & Sillanpää, Mika, 2018. "Recent advancement in biodiesel production methodologies using various feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 356-369.
    7. Hanna Karlsson Potter & Dalia M. M. Yacout & Kajsa Henryson, 2023. "Climate Assessment of Vegetable Oil and Biodiesel from Camelina Grown as an Intermediate Crop in Cereal-Based Crop Rotations in Cold Climate Regions," Sustainability, MDPI, vol. 15(16), pages 1-17, August.
    8. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    9. Zhang, X.L. & Yan, S. & Tyagi, R.D. & Surampalli, R.Y., 2013. "Biodiesel production from heterotrophic microalgae through transesterification and nanotechnology application in the production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 216-223.
    10. Dwivedi, Gaurav & Sharma, M.P., 2014. "Impact of cold flow properties of biodiesel on engine performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 650-656.
    11. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    12. Buffi, Marco & Valera-Medina, Agustin & Marsh, Richard & Pugh, Daniel & Giles, Anthony & Runyon, Jon & Chiaramonti, David, 2017. "Emissions characterization tests for hydrotreated renewable jet fuel from used cooking oil and its blends," Applied Energy, Elsevier, vol. 201(C), pages 84-93.
    13. Thowayeb H. Hassan & Abu Elnasr E. Sobaih & Amany E. Salem, 2021. "Factors Affecting the Rate of Fuel Consumption in Aircrafts," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    14. Mostafaei, Mostafa & Javadikia, Hossein & Naderloo, Leila, 2016. "Modeling the effects of ultrasound power and reactor dimension on the biodiesel production yield: Comparison of prediction abilities between response surface methodology (RSM) and adaptive neuro-fuzzy," Energy, Elsevier, vol. 115(P1), pages 626-636.
    15. Avin Pillay & Arman Molki & Mirella Elkadi & Johnson Manuel & Shrinivas Bojanampati & Mohammed Khan & Sasi Stephen, 2013. "Real-Time Study of Noxious Gas Emissions and Combustion Efficiency of Blended Mixtures of Neem Biodiesel and Petrodiesel," Sustainability, MDPI, vol. 5(5), pages 1-10, May.
    16. Verónica Ávila Vázquez & Miguel Mauricio Aguilera Flores & Luis Felipe Hernández Casas & Nahum Andrés Medellín Castillo & Alejandro Rocha Uribe & Hans Christian Correa Aguado, 2023. "Biodiesel Production Catalyzed by Lipase Extract Powder of Leonotis nepetifolia (Christmas Candlestick) Seed," Energies, MDPI, vol. 16(6), pages 1-13, March.
    17. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Mekhilef, S., 2011. "A review on prospect of Jatropha curcas for biodiesel in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3733-3756.
    18. Roy, Murari Mohon & Calder, Jorge & Wang, Wilson & Mangad, Arvind & Diniz, Fernando Cezar Mariano, 2016. "Cold start idle emissions from a modern Tier-4 turbo-charged diesel engine fueled with diesel-biodiesel, diesel-biodiesel-ethanol, and diesel-biodiesel-diethyl ether blends," Applied Energy, Elsevier, vol. 180(C), pages 52-65.
    19. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    20. Manzano-Agugliaro, F. & Sanchez-Muros, M.J. & Barroso, F.G. & Martínez-Sánchez, A. & Rojo, S. & Pérez-Bañón, C., 2012. "Insects for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3744-3753.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:68:y:2017:i:p1:p:623-637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.