IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v59y2016icp920-926.html
   My bibliography  Save this article

A review on well integrity issues for CO2 geological storage and enhanced gas recovery

Author

Listed:
  • Bai, Mingxing
  • Zhang, Zhichao
  • Fu, Xiaofei

Abstract

The world’s rapid economic growth has contributed to the ever increasing demand for energy which results in the increase of fossil fuels usage. On the other hand, renewable energies, which are considered environmentally friendly, cannot replace the fossil fuels in the short term. For this, CO2 capture and storage (CCS) technologies could work as transitional technology. To ensure a meaningful underground storage, well integrity is potentially the greatest challenge. On one hand, the injected CO2 may cause severe corrosion to metallic tubulars and cement in the wellbore. Identification, quantification and mitigation of this corrosion are the key to achieve satisfactory well conditions. On the other hand, the mechanical integrity loss due to cyclic and thermal loading in the well life will also occur, so to investigate and evaluate well integrity is of paramount importance to ensure a safe operation and storage. This paper presents a definition of well integrity in the scope of CSEGR as well as the mechanisms of well integrity loss. Overview on corrosion issues of metallic and cement corrosion along with the remedial measures is discussed. Through a thorough literature review, well integrity criteria for new and old wells are introduced to provide a guidance for material selection for the usage in CSEGR. Moreover, in order to evaluate the integrity of operational and abandoned wells, this paper provides a review on the existing monitoring methods, as well as risk based methods such as FEPs analysis, Performance and Risk Management, CO2-PENS, and put forward a new concept of well integrity evaluation.

Suggested Citation

  • Bai, Mingxing & Zhang, Zhichao & Fu, Xiaofei, 2016. "A review on well integrity issues for CO2 geological storage and enhanced gas recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 920-926.
  • Handle: RePEc:eee:rensus:v:59:y:2016:i:c:p:920-926
    DOI: 10.1016/j.rser.2016.01.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116000733
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.01.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Mingxing & Sun, Jianpeng & Song, Kaoping & Li, Lili & Qiao, Zhi, 2015. "Well completion and integrity evaluation for CO2 injection wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 556-564.
    2. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yafei Zhao & Ken-ichi Itakura, 2023. "A State-of-the-Art Review on Technology for Carbon Utilization and Storage," Energies, MDPI, vol. 16(10), pages 1-22, May.
    2. Cheng Cao & Hejuan Liu & Zhengmeng Hou & Faisal Mehmood & Jianxing Liao & Wentao Feng, 2020. "A Review of CO 2 Storage in View of Safety and Cost-Effectiveness," Energies, MDPI, vol. 13(3), pages 1-45, January.
    3. Qin, Jiazheng & Song, Junjie & Tang, Yong & Rui, Zhenhua & Wang, Yong & He, Youwei, 2023. "Well applicability assessment based on fuzzy theory for CO2 sequestration in depleted gas reservoirs," Renewable Energy, Elsevier, vol. 206(C), pages 239-250.
    4. Bergen, Sophia L. & Zemberekci, Lyn & Nair, Sriramya Duddukuri, 2022. "A review of conventional and alternative cementitious materials for geothermal wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Xiao, Ting & Chen, Ting & Ma, Zhiwei & Tian, Hailong & Meguerdijian, Saro & Chen, Bailian & Pawar, Rajesh & Huang, Lianjie & Xu, Tianfu & Cather, Martha & McPherson, Brian, 2024. "A review of risk and uncertainty assessment for geologic carbon storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    6. Hauck, Dominic & Hof, Andries F., 2017. "Abandonment of natural gas production and investment in carbon storage," Energy Policy, Elsevier, vol. 108(C), pages 322-329.
    7. Aminu, Mohammed D. & Nabavi, Seyed Ali & Rochelle, Christopher A. & Manovic, Vasilije, 2017. "A review of developments in carbon dioxide storage," Applied Energy, Elsevier, vol. 208(C), pages 1389-1419.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
    2. Gintautas Mozgeris & Daiva Juknelienė, 2021. "Modeling Future Land Use Development: A Lithuanian Case," Land, MDPI, vol. 10(4), pages 1-21, April.
    3. Balcombe, Paul & Speirs, Jamie & Johnson, Erin & Martin, Jeanne & Brandon, Nigel & Hawkes, Adam, 2018. "The carbon credentials of hydrogen gas networks and supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1077-1088.
    4. Pellegrino, Sandro & Lanzini, Andrea & Leone, Pierluigi, 2017. "Greening the gas network – The need for modelling the distributed injection of alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 266-286.
    5. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
    6. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    7. Jin, Lu & Hawthorne, Steven & Sorensen, James & Pekot, Lawrence & Kurz, Bethany & Smith, Steven & Heebink, Loreal & Herdegen, Volker & Bosshart, Nicholas & Torres, José & Dalkhaa, Chantsalmaa & Peters, 2017. "Advancing CO2 enhanced oil recovery and storage in unconventional oil play—Experimental studies on Bakken shales," Applied Energy, Elsevier, vol. 208(C), pages 171-183.
    8. José Luis Míguez & Jacobo Porteiro & Raquel Pérez-Orozco & Miguel Ángel Gómez, 2018. "Technology Evolution in Membrane-Based CCS," Energies, MDPI, vol. 11(11), pages 1-18, November.
    9. Vinca, Adriano & Rottoli, Marianna & Marangoni, Giacomo & Tavoni, Massimo, 2017. "The Role of Carbon Capture and Storage Electricity in Attaining 1.5 and 2°C," MITP: Mitigation, Innovation and Transformation Pathways 266285, Fondazione Eni Enrico Mattei (FEEM).
    10. Ganesh, Ibram, 2016. "Electrochemical conversion of carbon dioxide into renewable fuel chemicals – The role of nanomaterials and the commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1269-1297.
    11. Li, Qing & Zhang, Huaige & Hong, Xianpei, 2020. "Knowledge structure of technology licensing based on co-keywords network: A review and future directions," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 154-165.
    12. Zhang, Shuai & Liu, Linlin & Zhang, Lei & Zhuang, Yu & Du, Jian, 2018. "An optimization model for carbon capture utilization and storage supply chain: A case study in Northeastern China," Applied Energy, Elsevier, vol. 231(C), pages 194-206.
    13. Li, Jichao & Han, Wei & Li, Peijing & Ma, Wenjing & Xue, Xiaodong & Jin, Hongguang, 2023. "High-efficiency power generation system with CO2 capture based on cascading coal gasification employing chemical recuperation," Energy, Elsevier, vol. 283(C).
    14. Liu, Quanyou & Zhu, Dongya & Jin, Zhijun & Tian, Hailong & Zhou, Bing & Jiang, Peixue & Meng, Qingqiang & Wu, Xiaoqi & Xu, Huiyuan & Hu, Ting & Zhu, Huixing, 2023. "Carbon capture and storage for long-term and safe sealing with constrained natural CO2 analogs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    15. Chang, Yuan & Gao, Siqi & Ma, Qian & Wei, Ying & Li, Guoping, 2024. "Techno-economic analysis of carbon capture and utilization technologies and implications for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    16. Cormos, Calin-Cristian, 2020. "Energy and cost efficient manganese chemical looping air separation cycle for decarbonized power generation based on oxy-fuel combustion and gasification," Energy, Elsevier, vol. 191(C).
    17. Giorgetti, S. & Bricteux, L. & Parente, A. & Blondeau, J. & Contino, F. & De Paepe, W., 2017. "Carbon capture on micro gas turbine cycles: Assessment of the performance on dry and wet operations," Applied Energy, Elsevier, vol. 207(C), pages 243-253.
    18. Silvana Fais & Giuseppe Casula & Francesco Cuccuru & Paola Ligas & Maria Giovanna Bianchi & Alberto Plaisant & Alberto Pettinau, 2019. "A Contribution to the Geological Characterization of a Potential Caprock-Reservoir System in the Sulcis Coal Basin (South-Western Sardinia)," Energies, MDPI, vol. 12(23), pages 1-37, November.
    19. Niu, Daming & Sun, Pingchang & Ma, Lin & Zhao, Kang'an & Ding, Cong, 2023. "Porosity evolution of Minhe oil shale under an open rapid heating system and the carbon storage potentials," Renewable Energy, Elsevier, vol. 205(C), pages 783-799.
    20. Cavalcanti, Eduardo J.C. & Lima, Matheus S.R. & de Souza, Gabriel F., 2020. "Comparison of carbon capture system and concentrated solar power in natural gas combined cycle: Exergetic and exergoenvironmental analyses," Renewable Energy, Elsevier, vol. 156(C), pages 1336-1347.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:59:y:2016:i:c:p:920-926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.