IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v108y2017icp322-329.html
   My bibliography  Save this article

Abandonment of natural gas production and investment in carbon storage

Author

Listed:
  • Hauck, Dominic
  • Hof, Andries F.

Abstract

Long-term mitigation scenarios rely heavily on Carbon Capture and Storage (CCS) for achieving ambitious climate change targets. The amount of CO2 storage in these scenarios depends on the CO2 price and exogenously determined availability and costs of storage capacity. We analyze investment in CCS in more detail by taking the opportunity costs of CO2 storage into account, assuming that CO2 injection and resource extraction are mutually exclusive. Using real option valuation, we study the impact of i) correlation between gas and CO2 prices, ii) volatility of CO2 prices, and iii) regulatory deadlines on the value of the option to invest in CCS. We find that the value of the option to exchange gas production for CO2 injection is decreasing in the correlation of gas and CO2 prices, but increasing in the volatility of CO2 prices, and in shorter regulatory deadlines for removal of gas production facilities. This implies that next to consistent and high pricing of CO2, extending the deadline for removal of gas production facilities could increase the incentive to invest in CO2 storage in mature gas fields. We argue that considering these dynamics in mitigation scenarios could lead to more realistic projections of CCS application.

Suggested Citation

  • Hauck, Dominic & Hof, Andries F., 2017. "Abandonment of natural gas production and investment in carbon storage," Energy Policy, Elsevier, vol. 108(C), pages 322-329.
  • Handle: RePEc:eee:enepol:v:108:y:2017:i:c:p:322-329
    DOI: 10.1016/j.enpol.2017.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517303567
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fuss, Sabine & Szolgayova, Jana & Obersteiner, Michael & Gusti, Mykola, 2008. "Investment under market and climate policy uncertainty," Applied Energy, Elsevier, vol. 85(8), pages 708-721, August.
    2. Hintermann, Beat, 2010. "Allowance price drivers in the first phase of the EU ETS," Journal of Environmental Economics and Management, Elsevier, vol. 59(1), pages 43-56, January.
    3. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    4. Robert McDonald & Daniel Siegel, 1986. "The Value of Waiting to Invest," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 101(4), pages 707-727.
    5. R. H. Coase, 2013. "The Problem of Social Cost," Journal of Law and Economics, University of Chicago Press, vol. 56(4), pages 837-877.
    6. Boyle, Phelim P & Evnine, Jeremy & Gibbs, Stephen, 1989. "Numerical Evaluation of Multivariate Contingent Claims," The Review of Financial Studies, Society for Financial Studies, vol. 2(2), pages 241-250.
    7. Peter S. Reinelt & David W. Keith, 2007. "Carbon Capture Retrofits and the Cost of Regulatory Uncertainty," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 101-128.
    8. Bai, Mingxing & Zhang, Zhichao & Fu, Xiaofei, 2016. "A review on well integrity issues for CO2 geological storage and enhanced gas recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 920-926.
    9. Johnson, Timothy L. & Keith, David W., 2004. "Fossil electricity and CO2 sequestration: how natural gas prices, initial conditions and retrofits determine the cost of controlling CO2 emissions," Energy Policy, Elsevier, vol. 32(3), pages 367-382, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas Aspinall & Adrian Gepp & Geoff Harris & Simone Kelly & Colette Southam & Bruce Vanstone, 2021. "Estimation of a term structure model of carbon prices through state space methods: The European Union emissions trading scheme," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(2), pages 3797-3819, June.
    2. Guo, Jian-Xin & Tan, Xianchun & Gu, Baihe & Zhu, Kaiwei, 2022. "Integration of supply chain management of hybrid biomass power plant with carbon capture and storage operation," Renewable Energy, Elsevier, vol. 190(C), pages 1055-1065.
    3. Glensk, Barbara & Madlener, Reinhard, 2019. "The value of enhanced flexibility of gas-fired power plants: A real options analysis," Applied Energy, Elsevier, vol. 251(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linnerud, Kristin & Andersson, Ane Marte & Fleten, Stein-Erik, 2014. "Investment timing under uncertain renewable energy policy: An empirical study of small hydropower projects," Energy, Elsevier, vol. 78(C), pages 154-164.
    2. Walsh, D.M. & O'Sullivan, K. & Lee, W.T. & Devine, M.T., 2014. "When to invest in carbon capture and storage technology: A mathematical model," Energy Economics, Elsevier, vol. 42(C), pages 219-225.
    3. Walsh, Darragh & O'Sullivan, K. & Lee, W. T. & Devine, M., 2013. "When to Invest in Carbon Capture and Storage Technology in the Presence of Uncertainty: a Mathematical Model," Papers WP461, Economic and Social Research Institute (ESRI).
    4. Hervé-Mignucci, Morgan, 2011. "Rôle du signal prix du carbone sur les décisions d'investissement des entreprises," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/8200 edited by Keppler, Jan Horst.
    5. Mo, Jianlei & Schleich, Joachim & Fan, Ying, 2018. "Getting ready for future carbon abatement under uncertainty – Key factors driving investment with policy implications," Energy Economics, Elsevier, vol. 70(C), pages 453-464.
    6. S H Martzoukos, 2009. "Real R&D options and optimal activation of two-dimensional random controls," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(6), pages 843-858, June.
    7. Dumortier, Jerome Robert Florian, 2011. "The impact of forest offset credits under a stochastic carbon price on agriculture using a rational expectations and real options framework," ISU General Staff Papers 201101010800001160, Iowa State University, Department of Economics.
    8. Zhou, Yuanqi & Yang, Jinqiang & Jia, Zhijie, 2023. "Optimizing energy efficiency investments in steel firms: A real options model considering carbon trading and tax cuts during challenging economic conditions," Resources Policy, Elsevier, vol. 85(PA).
    9. Fuss, Sabine & Szolgayova, Jana & Obersteiner, Michael & Gusti, Mykola, 2008. "Investment under market and climate policy uncertainty," Applied Energy, Elsevier, vol. 85(8), pages 708-721, August.
    10. Boomsma, Trine Krogh & Linnerud, Kristin, 2015. "Market and policy risk under different renewable electricity support schemes," Energy, Elsevier, vol. 89(C), pages 435-448.
    11. Gabriel E Lade & C -Y Cynthia Lin Lawell & Aaron Smith, 2018. "Policy Shocks and Market-Based Regulations: Evidence from the Renewable Fuel Standard," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(3), pages 707-731.
    12. Zdenìk Zmeškal, 2008. "Application of the American Real Flexible Switch Options Methodology A Generalized Approach," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 58(05-06), pages 261-275, August.
    13. Zhuyun Xie & Hyder Ali & Suresh Kumar & Salma Naz & Umair Ahmed, 2024. "The Impact of Energy-Related Uncertainty on Corporate Investment Decisions in China," Energies, MDPI, vol. 17(10), pages 1-26, May.
    14. Rohlfs, Wilko & Madlener, Reinhard, 2011. "Multi-Commodity Real Options Analysis of Power Plant Investments: Discounting Endogenous Risk Structures," FCN Working Papers 22/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    15. Fuss, Sabine & Johansson, Daniel J.A. & Szolgayova, Jana & Obersteiner, Michael, 2009. "Impact of climate policy uncertainty on the adoption of electricity generating technologies," Energy Policy, Elsevier, vol. 37(2), pages 733-743, February.
    16. Carlos Andrés Zapata Quimbayo, 2020. "OPCIONES REALES Una guía teórico-práctica para la valoración de inversiones bajo incertidumbre mediante modelos en tiempo discreto y simulación de Monte Carlo," Books, Universidad Externado de Colombia, Facultad de Finanzas, Gobierno y Relaciones Internacionales, number 138, April.
    17. Kang, Sang Baum & Létourneau, Pascal, 2016. "Investors’ reaction to the government credibility problem: A real option analysis of emission permit policy risk," Energy Economics, Elsevier, vol. 54(C), pages 96-107.
    18. ShahNazari, Mahdi & McHugh, Adam & Maybee, Bryan & Whale, Jonathan, 2014. "The effect of political cycles on power investment decisions: Expectations over the repeal and reinstatement of carbon policy mechanisms in Australia," Applied Energy, Elsevier, vol. 130(C), pages 157-165.
    19. Romano, Teresa & Fumagalli, Elena, 2018. "Greening the power generation sector: Understanding the role of uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 272-286.
    20. Szolgayova, Jana & Fuss, Sabine & Obersteiner, Michael, 2008. "Assessing the effects of CO2 price caps on electricity investments--A real options analysis," Energy Policy, Elsevier, vol. 36(10), pages 3974-3981, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:108:y:2017:i:c:p:322-329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.