IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v23y2003i1p35-53.html
   My bibliography  Save this article

Joint Persistence of Transformation Products in Chemicals Assessment: Case Studies and Uncertainty Analysis

Author

Listed:
  • Kathrin Fenner
  • Martin Scheringer
  • Konrad Hungerbühler

Abstract

The joint persistence (JP) quantifies the environmental persistence of a parent compound and a selection of relevant transformation products. Here, the importance as well as the uncertainty of the JP in comparison to the persistence of the parent compound alone (primary persistence, PP) are investigated. To demonstrate the effect of transformation products on the environmental persistence of organic chemicals, three case studies of parent compounds (nonylphenol ethoxylates, perchloroethylene, atrazine) and transformation products are investigated in detail with a multimedia fate model. Comparison of the PP and JP values shows that transformation products can significantly increase the persistence. In addition to the point estimates of PP and JP, the associated uncertainties are investigated. For each of the case studies, the chemical‐specific input parameters of all compounds are varied and the corresponding variance of the PP and JP is determined by Monte Carlo simulations. Interestingly, the higher number of input parameters required for the JP does not necessarily increase the uncertainty of the JP as compared to that of the PP alone. An exact mathematical expression specifying the contribution of each transformation product to the JP is given. When transformation products are grouped in different generations, it becomes discernible that the first generation increases the JP most; the later generations are of decreasing importance. Finally, the effect of incomplete knowledge of the transformation products and their properties on the JP results is discussed. For reliable JP estimates, knowledge of the first generation transformation products and their degradation rate constants is required.

Suggested Citation

  • Kathrin Fenner & Martin Scheringer & Konrad Hungerbühler, 2003. "Joint Persistence of Transformation Products in Chemicals Assessment: Case Studies and Uncertainty Analysis," Risk Analysis, John Wiley & Sons, vol. 23(1), pages 35-53, February.
  • Handle: RePEc:wly:riskan:v:23:y:2003:i:1:p:35-53
    DOI: 10.1111/1539-6924.00288
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1539-6924.00288
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1539-6924.00288?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Edgar G. Hertwich & Thomas E. McKone & William S. Pease, 2000. "A Systematic Uncertainty Analysis of an Evaluative Fate and Exposure Model," Risk Analysis, John Wiley & Sons, vol. 20(4), pages 439-454, August.
    2. Edgar G. Hertwich & Thomas E. McKone & William S. Pease, 1999. "Parameter Uncertainty and Variability In Evaluative Fate and Exposure Models," Risk Analysis, John Wiley & Sons, vol. 19(6), pages 1193-1204, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai Lessmann & Andreas Beyer & Jörg Klasmeier & Michael Matthies, 2005. "Influence of Distributional Shape of Substance Parameters on Exposure Model Output," Risk Analysis, John Wiley & Sons, vol. 25(5), pages 1137-1145, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    2. Deborah H. Bennett & Manuele D. Margni & Thomas E. McKone & Olivier Jolliet, 2002. "Intake Fraction for Multimedia Pollutants: A Tool for Life Cycle Analysis and Comparative Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 22(5), pages 905-918, October.
    3. Xu, Changqing & Shi, Wenxiao & Hong, Jinglan & Zhang, Fangfang & Chen, Wei, 2015. "Life cycle assessment of food waste-based biogas generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 169-177.
    4. Yacov Y. Haimes, 2011. "On the Complex Quantification of Risk: Systems‐Based Perspective on Terrorism," Risk Analysis, John Wiley & Sons, vol. 31(8), pages 1175-1186, August.
    5. Lorelei Ford & Lalita Bharadwaj & Lianne McLeod & Cheryl Waldner, 2017. "Human Health Risk Assessment Applied to Rural Populations Dependent on Unregulated Drinking Water Sources: A Scoping Review," IJERPH, MDPI, vol. 14(8), pages 1-22, July.
    6. Kai Lessmann & Andreas Beyer & Jörg Klasmeier & Michael Matthies, 2005. "Influence of Distributional Shape of Substance Parameters on Exposure Model Output," Risk Analysis, John Wiley & Sons, vol. 25(5), pages 1137-1145, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:23:y:2003:i:1:p:35-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.