IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v13y2009i5p1039-1048.html
   My bibliography  Save this article

Life Cycle Assessment, ExternE and Comprehensive Analysis for an integrated evaluation of the environmental impact of anthropogenic activities

Author

Listed:
  • Pietrapertosa, F.
  • Cosmi, C.
  • Macchiato, M.
  • Salvia, M.
  • Cuomo, V.

Abstract

The implementation of resource management strategies aimed at reducing the impacts of the anthropogenic activities system requires a comprehensive approach to evaluate on the whole the environmental burdens of productive processes and to identify the best recovery strategies from both an environmental and an economic point of view. In this framework, an analytical methodology based on the integration of Life Cycle Assessment (LCA), ExternE and Comprehensive Analysis was developed to perform an in-depth investigation of energy systems. The LCA methodology, largely utilised by the international scientific community for the assessment of the environmental performances of technologies, combined with Comprehensive Analysis allows modelling the overall system of anthropogenic activities, as well as sub-systems, the economic consequences of the whole set of environmental damages. Moreover, internalising external costs into partial equilibrium models, as those utilised by Comprehensive Analysis, can be useful to identify the best paths for implementing technology innovation and strategies aimed to a more sustainable energy supply and use. This paper presents an integrated application of these three methodologies to a local scale case study (the Val D'Agri area in Basilicata, Southern Italy), aimed to better characterise the environmental impacts of the energy system, with particular reference to extraction activities. The innovative methodological approach utilised takes advantage from the strength points of each methodology with an added value coming from their integration as emphasised by the main results obtained by the scenario analysis.

Suggested Citation

  • Pietrapertosa, F. & Cosmi, C. & Macchiato, M. & Salvia, M. & Cuomo, V., 2009. "Life Cycle Assessment, ExternE and Comprehensive Analysis for an integrated evaluation of the environmental impact of anthropogenic activities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1039-1048, June.
  • Handle: RePEc:eee:rensus:v:13:y:2009:i:5:p:1039-1048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(08)00091-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pietrapertosa, F. & Cosmi, C. & Macchiato, M. & Marmo, G. & Salvia, M., 2003. "Comprehensive modelling for approaching the Kyoto targets on a local scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(3), pages 249-270, June.
    2. Krewitt, Wolfram, 2002. "External costs of energy--do the answers match the questions?: Looking back at 10 years of ExternE," Energy Policy, Elsevier, vol. 30(10), pages 839-848, August.
    3. Rafaj, Peter & Kypreos, Socrates, 2007. "Internalisation of external cost in the power generation sector: Analysis with Global Multi-regional MARKAL model," Energy Policy, Elsevier, vol. 35(2), pages 828-843, February.
    4. Munksgaard, Jesper & Ramskov, Jacob, 2002. "Effects of internalising external production costs in a North European power market," Energy Policy, Elsevier, vol. 30(6), pages 501-510, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mirakyan, Atom & De Guio, Roland, 2013. "Integrated energy planning in cities and territories: A review of methods and tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 289-297.
    2. Brown, Kristen E. & Henze, Daven K. & Milford, Jana B., 2017. "How accounting for climate and health impacts of emissions could change the US energy system," Energy Policy, Elsevier, vol. 102(C), pages 396-405.
    3. Lee, Amy H.I. & Chen, Hsing Hung & Chen, Jack, 2017. "Building smart grid to power the next century in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 126-135.
    4. Choi, Jun-Ki & Friley, Paul & Alfstad, Thomas, 2012. "Implications of energy policy on a product system's dynamic life-cycle environmental impact: Survey and model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4744-4752.
    5. García-Gusano, Diego & Garraín, Daniel & Dufour, Javier, 2017. "Prospective life cycle assessment of the Spanish electricity production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 21-34.
    6. Shih, Yi-Hsuan & Tseng, Chao-Heng, 2014. "Cost-benefit analysis of sustainable energy development using life-cycle co-benefits assessment and the system dynamics approach," Applied Energy, Elsevier, vol. 119(C), pages 57-66.
    7. Mier, Mathias & Adelowo, Jacqueline & Weissbart, Christoph, 2024. "Complementary taxation of carbon emissions and local air pollution," Energy Economics, Elsevier, vol. 132(C).
    8. Ivner, Jenny & Broberg Viklund, Sarah, 2015. "Effect of the use of industrial excess heat in district heating on greenhouse gas emissions: A systems perspective," Resources, Conservation & Recycling, Elsevier, vol. 100(C), pages 81-87.
    9. Mathias Mier & Jacqueline Adelowo & Christoph Weissbart, 2022. "Complementary Taxation of Carbon Emissions and Local Air Pollution," ifo Working Paper Series 375, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    10. Mirakyan, Atom & De Guio, Roland, 2015. "Modelling and uncertainties in integrated energy planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 62-69.
    11. Marta Bottero & Valentina Ferretti & Giulio Mondini, 2013. "From the environmental debt to the environmental loan: trends and future challenges for intergenerational discounting," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 15(6), pages 1623-1644, December.
    12. Selman Sevindik & Catalina Spataru, 2022. "An Integrated Methodology for Scenarios Analysis of Low Carbon Technologies Uptake towards a Circular Economy: The Case of Orkney," Energies, MDPI, vol. 16(1), pages 1-29, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    2. Fahlén, E. & Ahlgren, E.O., 2010. "Accounting for external costs in a study of a Swedish district-heating system - An assessment of environmental policies," Energy Policy, Elsevier, vol. 38(9), pages 4909-4920, September.
    3. Becerra-Lopez, Humberto R. & Golding, Peter, 2007. "Dynamic exergy analysis for capacity expansion of regional power-generation systems: Case study of far West Texas," Energy, Elsevier, vol. 32(11), pages 2167-2186.
    4. Oree, Vishwamitra & Sayed Hassen, Sayed Z. & Fleming, Peter J., 2017. "Generation expansion planning optimisation with renewable energy integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 790-803.
    5. Comodi, G. & Cioccolanti, L. & Gargiulo, M., 2012. "Municipal scale scenario: Analysis of an Italian seaside town with MarkAL-TIMES," Energy Policy, Elsevier, vol. 41(C), pages 303-315.
    6. Nguyen, Khanh Q., 2008. "Internalizing externalities into capacity expansion planning: The case of electricity in Vietnam," Energy, Elsevier, vol. 33(5), pages 740-746.
    7. Anandarajah, Gabrial & Gambhir, Ajay, 2014. "India’s CO2 emission pathways to 2050: What role can renewables play?," Applied Energy, Elsevier, vol. 131(C), pages 79-86.
    8. Iribarren, Diego & Martín-Gamboa, Mario & Navas-Anguita, Zaira & García-Gusano, Diego & Dufour, Javier, 2020. "Influence of climate change externalities on the sustainability-oriented prioritisation of prospective energy scenarios," Energy, Elsevier, vol. 196(C).
    9. Ortega, Margarita & del Río, Pablo & Montero, Eduardo A., 2013. "Assessing the benefits and costs of renewable electricity. The Spanish case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 294-304.
    10. Verbruggen, Aviel, 2009. "Performance evaluation of renewable energy support policies, applied on Flanders' tradable certificates system," Energy Policy, Elsevier, vol. 37(4), pages 1385-1394, April.
    11. Thomson, Heather & Kempton, Willett, 2018. "Perceptions and attitudes of residents living near a wind turbine compared with those living near a coal power plant," Renewable Energy, Elsevier, vol. 123(C), pages 301-311.
    12. Koji Tokimatsu & Louis Dupuy & Nick Hanley, 2019. "Using Genuine Savings for Climate Policy Evaluation with an Integrated Assessment Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 281-307, January.
    13. Nir Becker & David Soloveitchik & Moshe Olshansky, 2012. "A Weighted Average Incorporation of Pollution Costs into the Electrical Expansion Planning," Energy & Environment, , vol. 23(1), pages 1-15, January.
    14. de-Llano Paz, Fernando & Antelo, Susana Iglesias & Calvo Silvosa, Anxo & Soares, Isabel, 2014. "The technological and environmental efficiency of the EU-27 power mix: An evaluation based on MPT," Energy, Elsevier, vol. 69(C), pages 67-81.
    15. Rentizelas, Athanasios & Georgakellos, Dimitrios, 2014. "Incorporating life cycle external cost in optimization of the electricity generation mix," Energy Policy, Elsevier, vol. 65(C), pages 134-149.
    16. Venmans, Frank, 2012. "A literature-based multi-criteria evaluation of the EU ETS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5493-5510.
    17. McHenry, Mark, 2009. "Policy options when giving negative externalities market value: Clean energy policymaking and restructuring the Western Australian energy sector," Energy Policy, Elsevier, vol. 37(4), pages 1423-1431, April.
    18. Jintao Lu & Chong Zhang & Licheng Ren & Mengshang Liang & Wadim Strielkowski & Justas Streimikis, 2020. "Evolution of External Health Costs of Electricity Generation in the Baltic States," IJERPH, MDPI, vol. 17(15), pages 1-22, July.
    19. Jochem, Patrick & Doll, Claus & Fichtner, Wolf, 2016. "External costs of electric vehicles," MPRA Paper 91602, University Library of Munich, Germany.
    20. Wang, Hsiao-Fan & Sung, Meng-Ping & Hsu, Hsin-Wei, 2016. "Complementarity and substitution of renewable energy in target year energy supply-mix plannin–in the case of Taiwan," Energy Policy, Elsevier, vol. 90(C), pages 172-182.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:13:y:2009:i:5:p:1039-1048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.