IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v99y2021ics0305048318311824.html
   My bibliography  Save this article

Assessment of sustainable integration of new products into value chain through a generic decision support model: An application to the forest value chain

Author

Listed:
  • Ouhimmou, Mustapha
  • Rönnqvist, Mikael
  • Lapointe, Louis-Alexandre

Abstract

Integrating new products into an existing value chain network is a crucial step in a company's strategy to remain competitive. Businesses are evolving in an economy deeply affected by the global development through unstable markets, changes in trade agreements, increased preoccupations with land use and pollution, and technological advancements. Intrinsically, a company creates a product portfolio to target specific market needs, balance resources and capacities, lower market risks, and ensure stable revenue input. Nevertheless, changing markets increasingly complicate the set of parameters that a company must consider when securing an efficient product portfolio. This research aims to help organizations assess prospective products and optimize product integration by detecting synergies of an existing production/distribution network. To this end, we developed an analytics tool in the form of a mixed-integer linear programming model to evaluate a regional production/distribution network's strategical-level decisions. The model allows mathematical representation of a given network composed of divergent manufacturing processes, bill of materials, distribution nodes, and business-to-business circular economy. The model is applied to a realistic case study in Quebec's Mauricie region, where the introduction of eight bioproducts is evaluated for the forest value chain. The processes considered are: pressurized hot water extraction, fast pyrolysis, organosolv fractionation, and kraft lignin recovery. Our results show that biorefineries have potential economic, social and environmental impacts on the existing forest industry but are tightly linked to the governmental subsidies underlying the forest industry's incapacity to self-sufficiently sustain economic long-term viability in its development towards market maturity.

Suggested Citation

  • Ouhimmou, Mustapha & Rönnqvist, Mikael & Lapointe, Louis-Alexandre, 2021. "Assessment of sustainable integration of new products into value chain through a generic decision support model: An application to the forest value chain," Omega, Elsevier, vol. 99(C).
  • Handle: RePEc:eee:jomega:v:99:y:2021:i:c:s0305048318311824
    DOI: 10.1016/j.omega.2019.102173
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048318311824
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2019.102173?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mikael Rönnqvist & Sophie D’Amours & Andres Weintraub & Alejandro Jofre & Eldon Gunn & Robert Haight & David Martell & Alan Murray & Carlos Romero, 2015. "Operations Research challenges in forestry: 33 open problems," Annals of Operations Research, Springer, vol. 232(1), pages 11-40, September.
    2. Vidal, Carlos J. & Goetschalckx, Marc, 1997. "Strategic production-distribution models: A critical review with emphasis on global supply chain models," European Journal of Operational Research, Elsevier, vol. 98(1), pages 1-18, April.
    3. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    4. Bouchard, M. & D’Amours, S. & Rönnqvist, M. & Azouzi, R. & Gunn, E., 2017. "Integrated optimization of strategic and tactical planning decisions in forestry," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1132-1143.
    5. Talluri, Srinivas & Baker, R. C. & Sarkis, Joseph, 1999. "A framework for designing efficient value chain networks," International Journal of Production Economics, Elsevier, vol. 62(1-2), pages 133-144, May.
    6. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    7. De Meyer, Annelies & Cattrysse, Dirk & Rasinmäki, Jussi & Van Orshoven, Jos, 2014. "Methods to optimise the design and management of biomass-for-bioenergy supply chains: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 657-670.
    8. Vila, Didier & Martel, Alain & Beauregard, Robert, 2006. "Designing logistics networks in divergent process industries: A methodology and its application to the lumber industry," International Journal of Production Economics, Elsevier, vol. 102(2), pages 358-378, August.
    9. Shabani, Nazanin & Sowlati, Taraneh, 2013. "A mixed integer non-linear programming model for tactical value chain optimization of a wood biomass power plant," Applied Energy, Elsevier, vol. 104(C), pages 353-361.
    10. Holweg, Matthias & Helo, Petri, 2014. "Defining value chain architectures: Linking strategic value creation to operational supply chain design," International Journal of Production Economics, Elsevier, vol. 147(PB), pages 230-238.
    11. von Geibler, Justus & Kristof, Kora & Bienge, Katrin, 2010. "Sustainability assessment of entire forest value chains: Integrating stakeholder perspectives and indicators in decision support tools," Ecological Modelling, Elsevier, vol. 221(18), pages 2206-2214.
    12. Parajuli, Ranjan & Dalgaard, Tommy & Jørgensen, Uffe & Adamsen, Anders Peter S. & Knudsen, Marie Trydeman & Birkved, Morten & Gylling, Morten & Schjørring, Jan Kofod, 2015. "Biorefining in the prevailing energy and materials crisis: a review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 244-263.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saumyaranjan Sahoo & Suresh Kumar Jakhar, 2024. "Industry 4.0 deployment for circular economy performance—Understanding the role of green procurement and remanufacturing activities," Business Strategy and the Environment, Wiley Blackwell, vol. 33(2), pages 1144-1160, February.
    2. Wang, Xinxin & Xu, Zeshui & Qin, Yong & Skare, Marinko, 2021. "Service networks for sustainable business: A dynamic evolution analysis over half a century," Journal of Business Research, Elsevier, vol. 136(C), pages 543-557.
    3. Zhaoyuan He & Paul Turner, 2021. "A Systematic Review on Technologies and Industry 4.0 in the Forest Supply Chain: A Framework Identifying Challenges and Opportunities," Logistics, MDPI, vol. 5(4), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    2. Lo, Shirleen Lee Yuen & How, Bing Shen & Leong, Wei Dong & Teng, Sin Yong & Rhamdhani, Muhammad Akbar & Sunarso, Jaka, 2021. "Techno-economic analysis for biomass supply chain: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Santos, Andreia & Carvalho, Ana & Barbosa-Póvoa, Ana Paula & Marques, Alexandra & Amorim, Pedro, 2019. "Assessment and optimization of sustainable forest wood supply chains – A systematic literature review," Forest Policy and Economics, Elsevier, vol. 105(C), pages 112-135.
    4. Mayerle, Sérgio Fernando & Neiva de Figueiredo, João, 2016. "Designing optimal supply chains for anaerobic bio-digestion/energy generation complexes with distributed small farm feedstock sourcing," Renewable Energy, Elsevier, vol. 90(C), pages 46-54.
    5. Jonas Zetterholm & Elina Bryngemark & Johan Ahlström & Patrik Söderholm & Simon Harvey & Elisabeth Wetterlund, 2020. "Economic Evaluation of Large-Scale Biorefinery Deployment: A Framework Integrating Dynamic Biomass Market and Techno-Economic Models," Sustainability, MDPI, vol. 12(17), pages 1-28, September.
    6. Malladi, Krishna Teja & Sowlati, Taraneh, 2018. "Biomass logistics: A review of important features, optimization modeling and the new trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 587-599.
    7. Sarker, Bhaba R. & Wu, Bingqing & Paudel, Krishna P., 2019. "Modeling and optimization of a supply chain of renewable biomass and biogas: Processing plant location," Applied Energy, Elsevier, vol. 239(C), pages 343-355.
    8. Kanematsu, Yuichiro & Oosawa, Kazutake & Okubo, Tatsuya & Kikuchi, Yasunori, 2017. "Designing the scale of a woody biomass CHP considering local forestry reformation: A case study of Tanegashima, Japan," Applied Energy, Elsevier, vol. 198(C), pages 160-172.
    9. Becker, Tristan & Lier, Stefan & Werners, Brigitte, 2019. "Value of modular production concepts in future chemical industry production networks," European Journal of Operational Research, Elsevier, vol. 276(3), pages 957-970.
    10. Venn, Tyron J. & Dorries, Jack W. & McGavin, Robert L., 2021. "A mathematical model to support investment in veneer and LVL manufacturing in subtropical eastern Australia," Forest Policy and Economics, Elsevier, vol. 128(C).
    11. M. Fattahi & M. Mahootchi & S. M. Moattar Husseini, 2016. "Integrated strategic and tactical supply chain planning with price-sensitive demands," Annals of Operations Research, Springer, vol. 242(2), pages 423-456, July.
    12. Gao, Evelyn & Sowlati, Taraneh & Akhtari, Shaghaygh, 2019. "Profit allocation in collaborative bioenergy and biofuel supply chains," Energy, Elsevier, vol. 188(C).
    13. Deboni, Tamires Liza & Simioni, Flávio José & Brand, Martha Andreia & Costa, Valdeci José, 2019. "Models for estimating the price of forest biomass used as an energy source: A Brazilian case," Energy Policy, Elsevier, vol. 127(C), pages 382-391.
    14. Yazan, Devrim Murat & Mandras, Giovanni & Garau, Giorgio, 2017. "Environmental and economic sustainability of integrated production in bio-refineries: The thistle case in Sardinia," Renewable Energy, Elsevier, vol. 102(PB), pages 349-360.
    15. Palander, Teijo & Haavikko, Hanna & Kärhä, Kalle, 2018. "Towards sustainable wood procurement in forest industry – The energy efficiency of larger and heavier vehicles in Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 100-118.
    16. Olivares-Benitez, Elias & Ríos-Mercado, Roger Z. & González-Velarde, José Luis, 2013. "A metaheuristic algorithm to solve the selection of transportation channels in supply chain design," International Journal of Production Economics, Elsevier, vol. 145(1), pages 161-172.
    17. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    18. Bairamzadeh, Samira & Saidi-Mehrabad, Mohammad & Pishvaee, Mir Saman, 2018. "Modelling different types of uncertainty in biofuel supply network design and planning: A robust optimization approach," Renewable Energy, Elsevier, vol. 116(PA), pages 500-517.
    19. Jonkman, Jochem & Barbosa-Póvoa, Ana P. & Bloemhof, Jacqueline M., 2019. "Integrating harvesting decisions in the design of agro-food supply chains," European Journal of Operational Research, Elsevier, vol. 276(1), pages 247-258.
    20. Moritz Julius Ziegler & Kilian Seifried & Philipp Kuske & Moritz Fleischmann, 2019. "TRUMPF Uses a Mixed Integer Model as Decision Support for Strategic Production Network Design," Interfaces, INFORMS, vol. 49(3), pages 213-226, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:99:y:2021:i:c:s0305048318311824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.