IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v20y2000i4p389-404.html
   My bibliography  Save this article

Measurements of solar radiation and illuminance on vertical surfaces and daylighting implications

Author

Listed:
  • Li, Danny H.W
  • Lam, Joseph C

Abstract

There is a growing concern about the rapid development of infrastructure and building projects and their likely impacts on the environment. Particular concerns have been raised about office building developments and energy consumption issues. In recent years, there has been increasing interest in using daylight to save energy in buildings. Lighting control integrated with daylighting is recognised as an important and useful strategy in terms of energy-efficient building design. It is believed that proper daylighting schemes can help reduce the electrical demand and contribute to achieving environmentally sustainable building developments. This paper presents a simple method for estimating the likely energy savings in electric lighting due to daylighting and the possible cooling penalty. Vertical solar radiation and illuminance data measurements are described. Cumulative frequency distributions of daylight availability are reported. The likely energy savings in office buildings are determined based on on–off and top-up controls, and the energy and environmental implications are discussed.

Suggested Citation

  • Li, Danny H.W & Lam, Joseph C, 2000. "Measurements of solar radiation and illuminance on vertical surfaces and daylighting implications," Renewable Energy, Elsevier, vol. 20(4), pages 389-404.
  • Handle: RePEc:eee:renene:v:20:y:2000:i:4:p:389-404
    DOI: 10.1016/S0960-1481(99)00126-3
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148199001263
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(99)00126-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Danny H.W., 2010. "A review of daylight illuminance determinations and energy implications," Applied Energy, Elsevier, vol. 87(7), pages 2109-2118, July.
    2. Li, Danny H.W. & Lam, Tony N.T. & Wong, S.L. & Tsang, Ernest K.W., 2008. "Lighting and cooling energy consumption in an open-plan office using solar film coating," Energy, Elsevier, vol. 33(8), pages 1288-1297.
    3. Li, Danny H.W & Lam, Joseph C & Lau, Chris C.S & Huan, T.W, 2004. "Lighting and energy performance of solar film coating in air-conditioned cellular offices," Renewable Energy, Elsevier, vol. 29(6), pages 921-937.
    4. Li, Danny H.W. & Lam, Joseph C. & Lau, Chris C.S., 2002. "A new approach for predicting vertical global solar irradiance," Renewable Energy, Elsevier, vol. 25(4), pages 591-606.
    5. Li, Danny H.W. & Lau, Chris C.S. & Lam, Joseph C., 2005. "Predicting daylight illuminance on inclined surfaces using sky luminance data," Energy, Elsevier, vol. 30(9), pages 1649-1665.
    6. Hye Yeon Kim & Hae Jin Kang, 2016. "A Study on Development of a Cost Optimal and Energy Saving Building Model: Focused on Industrial Building," Energies, MDPI, vol. 9(3), pages 1-19, March.
    7. Alrubaih, M.S. & Zain, M.F.M. & Alghoul, M.A. & Ibrahim, N.L.N. & Shameri, M.A. & Elayeb, Omkalthum, 2013. "Research and development on aspects of daylighting fundamentals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 494-505.
    8. Lam, Joseph C. & Tsang, C.L. & Li, Danny H.W. & Cheung, S.O., 2005. "Residential building envelope heat gain and cooling energy requirements," Energy, Elsevier, vol. 30(7), pages 933-951.
    9. Cuce, Erdem & Riffat, Saffa B., 2015. "A state-of-the-art review on innovative glazing technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 695-714.
    10. Li, Danny H.W & Lam, Joseph C, 2002. "A study of atmospheric turbidity for Hong Kong," Renewable Energy, Elsevier, vol. 25(1), pages 1-13.
    11. Song, Siao & Sun, Hongfa & Long, Jibo & Tan, Xin & Li, Jinhua, 2024. "Light-thermal environment of vertical translucent enclosure structures under solar radiation and method of internal shading adjustment," Energy, Elsevier, vol. 289(C).
    12. Li, Danny H.W. & Lou, Siwei, 2018. "Review of solar irradiance and daylight illuminance modeling and sky classification," Renewable Energy, Elsevier, vol. 126(C), pages 445-453.
    13. Singh, M.C. & Garg, S.N., 2010. "Illuminance estimation and daylighting energy savings for Indian regions," Renewable Energy, Elsevier, vol. 35(3), pages 703-711.
    14. Lou, Siwei & Li, Danny H.W. & Lam, Joseph C., 2017. "CIE Standard Sky classification by accessible climatic indices," Renewable Energy, Elsevier, vol. 113(C), pages 347-356.
    15. Li, D.H.W & Lam, J.C & Wong, S.L, 2002. "Daylighting and its implications to overall thermal transfer value (OTTV) determinations," Energy, Elsevier, vol. 27(11), pages 991-1008.
    16. Chow, T. T. & Chan, A. L. S., 2004. "Numerical study of desirable solar-collector orientations for the coastal region of South China," Applied Energy, Elsevier, vol. 79(3), pages 249-260, November.
    17. Li, Danny H. W. & Lau, Chris C. S. & Lam, Joseph C., 2001. "Evaluation of overcast-sky luminance models against measured Hong Kong data," Applied Energy, Elsevier, vol. 70(4), pages 321-331, December.
    18. Li, Danny H. W. & Lam, Joseph C., 2003. "An analysis of lighting energy savings and switching frequency for a daylit corridor under various indoor design illuminance levels," Applied Energy, Elsevier, vol. 76(4), pages 363-378, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:20:y:2000:i:4:p:389-404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.