Solid state bio methane production from vegetable wastes Current state and perception
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2014.07.016
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Parawira, W & Murto, M & Zvauya, R & Mattiasson, B, 2004. "Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves," Renewable Energy, Elsevier, vol. 29(11), pages 1811-1823.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Suliman Ali Al-Khateeb & Abid Hussain & Stefan Lange & Mohammad M. Almutari & Felicitas Schneider, 2021. "Battling Food Losses and Waste in Saudi Arabia: Mobilizing Regional Efforts and Blending Indigenous Knowledge to Address Global Food Security Challenges," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
- Jeslin Drusila Nesamalar, J. & Venkatesh, P. & Charles Raja, S., 2017. "The drive of renewable energy in Tamilnadu: Status, barriers and future prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 115-124.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Katinas, Vladislovas & Marčiukaitis, Mantas & Perednis, Eugenijus & Dzenajavičienė, Eugenija Farida, 2019. "Analysis of biodegradable waste use for energy generation in Lithuania," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 559-567.
- Garcia, Natalia Herrero & Mattioli, Andrea & Gil, Aida & Frison, Nicola & Battista, Federico & Bolzonella, David, 2019. "Evaluation of the methane potential of different agricultural and food processing substrates for improved biogas production in rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 1-10.
- Nges, Ivo Achu & Liu, Jing, 2010. "Effects of solid retention time on anaerobic digestion of dewatered-sewage sludge in mesophilic and thermophilic conditions," Renewable Energy, Elsevier, vol. 35(10), pages 2200-2206.
- P. Elaiyaraju & N. Partha, 2016. "Studies on biogas production by anaerobic process using agroindustrial wastes," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 62(2), pages 73-82.
- Alkaya, Emrah & Demirer, Göksel N., 2011. "Anaerobic mesophilic co-digestion of sugar-beet processing wastewater and beet-pulp in batch reactors," Renewable Energy, Elsevier, vol. 36(3), pages 971-975.
- Solli, Linn & Schnürer, Anna & Horn, Svein J., 2018. "Process performance and population dynamics of ammonium tolerant microorganisms during co-digestion of fish waste and manure," Renewable Energy, Elsevier, vol. 125(C), pages 529-536.
- Spyridon Achinas & Yu Li & Vasileios Achinas & Gerrit Jan Willem Euverink, 2019. "Biogas Potential from the Anaerobic Digestion of Potato Peels: Process Performance and Kinetics Evaluation," Energies, MDPI, vol. 12(12), pages 1-16, June.
- Maghanaki, M. Mohammadi & Ghobadian, B. & Najafi, G. & Galogah, R. Janzadeh, 2013. "Potential of biogas production in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 702-714.
- Mahmudul, H.M. & Rasul, M.G. & Akbar, D. & Narayanan, R. & Mofijur, M., 2022. "Food waste as a source of sustainable energy: Technical, economical, environmental and regulatory feasibility analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
- Moritz Wagner & Larissa Kamp & Simone Graeff-Hönninger & Iris Lewandowski, 2019. "Environmental and Economic Performance of Yacon ( Smallanthus sonchifolius ) Cultivated for Fructooligosaccharide Production," Sustainability, MDPI, vol. 11(17), pages 1-14, August.
- Bo Zhang & Wenzhe Li & Xiang Xu & Pengfei Li & Nan Li & Hongqiong Zhang & Yong Sun, 2019. "Effect of Aerobic Hydrolysis on Anaerobic Fermentation Characteristics of Various Parts of Corn Stover and the Scum Layer," Energies, MDPI, vol. 12(3), pages 1-15, January.
- Parawira, W. & Murto, M. & Zvauya, R. & Mattiasson, B., 2006. "Comparative performance of a UASB reactor and an anaerobic packed-bed reactor when treating potato waste leachate," Renewable Energy, Elsevier, vol. 31(6), pages 893-903.
- Rajaeifar, Mohammad Ali & Sadeghzadeh Hemayati, Saeed & Tabatabaei, Meisam & Aghbashlo, Mortaza & Mahmoudi, Seyed Bagher, 2019. "A review on beet sugar industry with a focus on implementation of waste-to-energy strategy for power supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 423-442.
- Ekwenna, Emeka Boniface & Wang, Yaodong & Roskilly, Anthony, 2023. "Bioenergy production from pretreated rice straw in Nigeria: An analysis of novel three-stage anaerobic digestion for hydrogen and methane co-generation," Applied Energy, Elsevier, vol. 348(C).
- Wandera, Simon M. & Qiao, Wei & Algapani, Dalal E. & Bi, Shaojie & Yin, Dongmin & Qi, Xiangyang & Liu, Yueling & Dach, Jacek & Dong, Renjie, 2018. "Searching for possibilities to improve the performance of full scale agricultural biogas plants," Renewable Energy, Elsevier, vol. 116(PA), pages 720-727.
- Singh, S.P. & Prerna, Pandey, 2009. "Review of recent advances in anaerobic packed-bed biogas reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1569-1575, August.
- Bożym, Marta & Florczak, Iwona & Zdanowska, Paulina & Wojdalski, Janusz & Klimkiewicz, Marek, 2015. "An analysis of metal concentrations in food wastes for biogas production," Renewable Energy, Elsevier, vol. 77(C), pages 467-472.
- Demirel, Burak & Scherer, Paul, 2009. "Bio-methanization of energy crops through mono-digestion for continuous production of renewable biogas," Renewable Energy, Elsevier, vol. 34(12), pages 2940-2945.
- Dar, R.A. & Parmar, M. & Dar, E.A. & Sani, R.K. & Phutela, U.G., 2021. "Biomethanation of agricultural residues: Potential, limitations and possible solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Afazeli, Hadi & Jafari, Ali & Rafiee, Shahin & Nosrati, Mohsen, 2014. "An investigation of biogas production potential from livestock and slaughterhouse wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 380-386.
More about this item
Keywords
Renewable energy; Bio methane; Biogas; Electricity generation; Vegetable waste applications;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:40:y:2014:i:c:p:432-437. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.