IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v40y2014icp1060-1069.html
   My bibliography  Save this article

Sensors for direct methanol fuel cells

Author

Listed:
  • Hassan, M.A.
  • Kamarudin, S.K.
  • Loh, K.S.
  • Daud, W.R.W.

Abstract

A sensor can be used to enhance the performance of a direct methanol fuel cell (DMFC). Sensors function as alarms for various problems encountered with DMFCs, of which methanol crossover is the primary problem. These sensors can significantly improve DMFC operation, thereby promoting the commercialisation of this product. Using sensors can also lower DMFC fabrication costs. For all of these reasons, an overview of sensor applications for DMFCs is presented in this paper. Different types of sensors and advances in sensor development are also discussed, particularly for DMFC systems. Finally, this paper highlights current issues and future improvements for the application of sensors to DMFCs.

Suggested Citation

  • Hassan, M.A. & Kamarudin, S.K. & Loh, K.S. & Daud, W.R.W., 2014. "Sensors for direct methanol fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1060-1069.
  • Handle: RePEc:eee:rensus:v:40:y:2014:i:c:p:1060-1069
    DOI: 10.1016/j.rser.2014.07.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211400519X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.07.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karim, N.A. & Kamarudin, S.K., 2013. "An overview on non-platinum cathode catalysts for direct methanol fuel cell," Applied Energy, Elsevier, vol. 103(C), pages 212-220.
    2. Zainoodin, A.M. & Kamarudin, S.K. & Masdar, M.S. & Daud, W.R.W. & Mohamad, A.B. & Sahari, J., 2014. "High power direct methanol fuel cell with a porous carbon nanofiber anode layer," Applied Energy, Elsevier, vol. 113(C), pages 946-954.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Radenahmad, Nikdalila & Afif, Ahmed & Petra, Pg Iskandar & Rahman, Seikh M.H. & Eriksson, Sten-G. & Azad, Abul K., 2016. "Proton-conducting electrolytes for direct methanol and direct urea fuel cells – A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1347-1358.
    2. An, Myung-Gi & Mehmood, Asad & Hwang, Jinyeon & Ha, Heung Yong, 2016. "A novel method of methanol concentration control through feedback of the amplitudes of output voltage fluctuations for direct methanol fuel cells," Energy, Elsevier, vol. 100(C), pages 217-226.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Joon-Hee & Yang, Min-Jee & Park, Jun-Young, 2014. "Improvement on performance and efficiency of direct methanol fuel cells using hydrocarbon-based membrane electrode assembly," Applied Energy, Elsevier, vol. 115(C), pages 95-102.
    2. Wang, Zhigang & Zhang, Xuelin & Nie, Li & Zhang, Yufeng & Liu, Xiaowei, 2014. "Elimination of water flooding of cathode current collector of micro passive direct methanol fuel cell by superhydrophilic surface treatment," Applied Energy, Elsevier, vol. 126(C), pages 107-112.
    3. Calabriso, Andrea & Borello, Domenico & Romano, Giovanni Paolo & Cedola, Luca & Del Zotto, Luca & Santori, Simone Giovanni, 2017. "Bubbly flow mapping in the anode channel of a direct methanol fuel cell via PIV investigation," Applied Energy, Elsevier, vol. 185(P2), pages 1245-1255.
    4. Nandan, Ravi & Goswami, Gopal Krishna & Nanda, Karuna Kar, 2017. "Direct synthesis of Pt-free catalyst on gas diffusion layer of fuel cell and usage of high boiling point fuels for efficient utilization of waste heat," Applied Energy, Elsevier, vol. 205(C), pages 1050-1058.
    5. Liu, Guicheng & Li, Xinyang & Wang, Hui & Liu, Xiuying & Chen, Ming & Woo, Jae Young & Kim, Ji Young & Wang, Xindong & Lee, Joong Kee, 2017. "Design of 3-electrode system for in situ monitoring direct methanol fuel cells during long-time running test at high temperature," Applied Energy, Elsevier, vol. 197(C), pages 163-168.
    6. Kiyani, Roya & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Nitrogen doped graphene supported palladium-cobalt as a promising catalyst for methanol oxidation reaction: Synthesis, characterization and electrocatalytic performance," Energy, Elsevier, vol. 113(C), pages 1162-1173.
    7. Song, Xingjuan & Zhang, Dongming, 2014. "Bimetallic Ag–Ni/C particles as cathode catalyst in AFCs (alkaline fuel cells)," Energy, Elsevier, vol. 70(C), pages 223-230.
    8. An, Myung-Gi & Mehmood, Asad & Ha, Heung Yong, 2014. "Sensor-less control of the methanol concentration of direct methanol fuel cells at varying ambient temperatures," Applied Energy, Elsevier, vol. 129(C), pages 104-111.
    9. Zakaria, Z. & Kamarudin, S.K., 2016. "Direct conversion technologies of methane to methanol: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 250-261.
    10. Halima Alnaqbi & Oussama El-Kadri & Mohammad Ali Abdelkareem & Sameer Al-Asheh, 2022. "Recent Progress in Metal-Organic Framework-Derived Chalcogenides (MX; X = S, Se) as Electrode Materials for Supercapacitors and Catalysts in Fuel Cells," Energies, MDPI, vol. 15(21), pages 1-25, November.
    11. Yuan, Rong-hua & He, Yun & He, Wei & Ni, Meng & Leung, Michael K.H., 2019. "Bifunctional electrocatalytic activity of La0.8Sr0.2MnO3-based perovskite with the A-site deficiency for oxygen reduction and evolution reactions in alkaline media," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    12. Hu, Zunyan & Xu, Liangfei & Huang, Yiyuan & Li, Jianqiu & Ouyang, Minggao & Du, Xiaoli & Jiang, Hongliang, 2018. "Comprehensive analysis of galvanostatic charge method for fuel cell degradation diagnosis," Applied Energy, Elsevier, vol. 212(C), pages 1321-1332.
    13. Deva Harsha Perugupalli & Tao Xu & Kyu Taek Cho, 2019. "Activation of Carbon Porous Paper for Alkaline Alcoholic Fuel Cells," Energies, MDPI, vol. 12(17), pages 1-12, August.
    14. Deng, Huichao & Zhang, Yufeng & Zheng, Xue & Li, Yang & Zhang, Xuelin & Liu, Xiaowei, 2015. "A CNT (carbon nanotube) paper as cathode gas diffusion electrode for water management of passive μ-DMFC (micro-direct methanol fuel cell) with highly concentrated methanol," Energy, Elsevier, vol. 82(C), pages 236-241.
    15. Yan, X.H. & Zhao, T.S. & An, L. & Zhao, G. & Zeng, L., 2015. "A crack-free and super-hydrophobic cathode micro-porous layer for direct methanol fuel cells," Applied Energy, Elsevier, vol. 138(C), pages 331-336.
    16. Abdelkareem, Mohammad Ali & Allagui, Anis & Sayed, Enas Taha & El Haj Assad, M. & Said, Zafar & Elsaid, Khaled, 2019. "Comparative analysis of liquid versus vapor-feed passive direct methanol fuel cells," Renewable Energy, Elsevier, vol. 131(C), pages 563-584.
    17. Beatriz A. Braz & Vânia B. Oliveira & Alexandra M. F. R. Pinto, 2020. "Experimental Evaluation of the Effect of the Anode Diffusion Layer Properties on the Performance of a Passive Direct Methanol Fuel Cell," Energies, MDPI, vol. 13(19), pages 1-11, October.
    18. Zhong, Kengqiang & Li, Meng & Yang, Yue & Zhang, Hongguo & Zhang, Bopeng & Tang, Jinfeng & Yan, Jia & Su, Minhua & Yang, Zhiquan, 2019. "Nitrogen-doped biochar derived from watermelon rind as oxygen reduction catalyst in air cathode microbial fuel cells," Applied Energy, Elsevier, vol. 242(C), pages 516-525.
    19. Munjewar, Seema S. & Thombre, Shashikant B. & Mallick, Ranjan K., 2017. "Approaches to overcome the barrier issues of passive direct methanol fuel cell – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1087-1104.
    20. Liu, Guicheng & Ding, Xianan & Zhou, Hongwei & Chen, Ming & Wang, Manxiang & Zhao, Zhenxuan & Yin, Zhuang & Wang, Xindong, 2015. "Structure optimization of cathode microporous layer for direct methanol fuel cells," Applied Energy, Elsevier, vol. 147(C), pages 396-401.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:40:y:2014:i:c:p:1060-1069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.