IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v32y2014icp107-113.html
   My bibliography  Save this article

Conditions and possibilities of direct utilisation of thermal-mineral waters in Raska region, Serbia

Author

Listed:
  • Joksimović, Marko
  • Pavlović, Mila A.

Abstract

The natural thermal-mineral springs in the Raska region in Serbia have been known since the ancient period. Temperatures of these sources between 26°C and 51°C have allowed the use of water for balneology and recreational purposes. Research over the past 50 years have pointed to the existence of significant amounts of thermal-mineral waters that occur in different tectonic zones and faults in the Dinarides. Bearing in mind the properties of thermal-mineral waters the paper deals with possibilities of their use as a renewable resource. The paper analyses the way of use of waters in three spas and one spring for health and recreational purposes and presents the possibilities for improving the use of unused water. The results hint at the possibility of direct use of heat energy from TM sources and substitution of fossil fuels, expenses of living and work in local communities. Direct use of geothermal energy, especially during the colder period of the year, would reduce the expenses of heating of public institutions, services and private households.

Suggested Citation

  • Joksimović, Marko & Pavlović, Mila A., 2014. "Conditions and possibilities of direct utilisation of thermal-mineral waters in Raska region, Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 107-113.
  • Handle: RePEc:eee:rensus:v:32:y:2014:i:c:p:107-113
    DOI: 10.1016/j.rser.2013.12.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114000033
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.12.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Golusin, Mirjana & Ivanovic, Olja Munitlak & Bagaric, Ivan & Vranjes, Sanja, 2010. "Exploitation of geothermal energy as a priority of sustainable energetic development in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 868-871, February.
    2. Kosic, Kristina & Pivac, Tatjana & Romelic, Jovan & Lazic, Lazar & Stojanovic, Vladimir, 2011. "Characteristics of thermal-mineral waters in Backa region (Vojvodina) and their exploitation in spa tourism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 801-807, January.
    3. Antonijevic, Dragi & Komatina, Mirko, 2011. "Sustainable sub-geothermal heat pump heating in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3534-3538.
    4. John W. Lund, 2010. "Direct Utilization of Geothermal Energy," Energies, MDPI, vol. 3(8), pages 1-29, August.
    5. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Milanović Pešić, Ana & Brankov, Jovana & Denda, Stefan & Bjeljac, Željko & Micić, Jasna, 2022. "Geothermal energy in Serbia – Current state, utilization and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Ristić, Dušan & Vukoičić, Danijela & Nikolić, Milena & Milinčić, Miroljub & Kićović, Dušan, 2019. "Capacities and energy potential of thermal-mineral springs in the area of the Kopaonik tourist region (Serbia)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 129-138.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gude, Veera Gnaneswar, 2016. "Geothermal source potential for water desalination – Current status and future perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1038-1065.
    2. Borović, Staša & Marković, Izidora, 2015. "Utilization and tourism valorisation of geothermal waters in Croatia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 52-63.
    3. Manso, José Ramos Pires & Behmiri, Niaz Bashiri, 2013. "Renewable Energy and Sustainable Development/Energía renovable y Desarrollo Sostenible," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 31, pages 7-34, Enero.
    4. Nakomcic-Smaragdakis, Branka & Stajic, Tijana & Cepic, Zoran & Djuric, Slavko, 2012. "Geothermal energy potentials in the province of Vojvodina from the aspect of the direct energy utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5696-5706.
    5. Moya, Diego & Aldás, Clay & Kaparaju, Prasad, 2018. "Geothermal energy: Power plant technology and direct heat applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 889-901.
    6. Agnieszka Operacz, 2021. "Possibility of Hydropower Development: A Simple-to-Use Index," Energies, MDPI, vol. 14(10), pages 1-19, May.
    7. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    8. Zheng, Bobo & Xu, Jiuping & Ni, Ting & Li, Meihui, 2015. "Geothermal energy utilization trends from a technological paradigm perspective," Renewable Energy, Elsevier, vol. 77(C), pages 430-441.
    9. Chandarasekharam, D. & Aref, Lashin & Nassir, Al Arifi, 2014. "CO2 mitigation strategy through geothermal energy, Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 154-163.
    10. L. Hay & A. H. B. Duffy & R. I. Whitfield, 2017. "The S‐Cycle Performance Matrix: Supporting Comprehensive Sustainability Performance Evaluation of Technical Systems," Systems Engineering, John Wiley & Sons, vol. 20(1), pages 45-70, January.
    11. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    12. Fonseca, Juan D. & Commenge, Jean-Marc & Camargo, Mauricio & Falk, Laurent & Gil, Iván D., 2021. "Sustainability analysis for the design of distributed energy systems: A multi-objective optimization approach," Applied Energy, Elsevier, vol. 290(C).
    13. Gottschamer, L. & Zhang, Q., 2016. "Interactions of factors impacting implementation and sustainability of renewable energy sourced electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 164-174.
    14. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "South Korean energy scenarios show how nuclear power can reduce future energy and environmental costs," Energy Policy, Elsevier, vol. 74(C), pages 569-578.
    15. Tomaszewska Barbara, 2012. "Geothermal Water Resources Management – Economic Aspects Of Their Treatment / Gospodarka Zasobami Wód Termalnych - Ekonomiczne Aspekty Ich Uzdatniania," Gospodarka Surowcami Mineralnymi / Mineral Resources Management, Sciendo, vol. 28(4), pages 59-70, December.
    16. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    17. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    18. Toledo, Olga Moraes & Oliveira Filho, Delly & Diniz, Antônia Sônia Alves Cardoso, 2010. "Distributed photovoltaic generation and energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 506-511, January.
    19. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies," Applied Energy, Elsevier, vol. 136(C), pages 712-725.
    20. Nguyen, Hai Tra & Safder, Usman & Nhu Nguyen, X.Q. & Yoo, ChangKyoo, 2020. "Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant," Energy, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:32:y:2014:i:c:p:107-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.