IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v162y2022ics1364032122003483.html
   My bibliography  Save this article

Geothermal energy in Serbia – Current state, utilization and perspectives

Author

Listed:
  • Milanović Pešić, Ana
  • Brankov, Jovana
  • Denda, Stefan
  • Bjeljac, Željko
  • Micić, Jasna

Abstract

In the 21st century, many countries are starting to use geothermal energy (GTE) as a new energy source. Serbia also has the potential to use it as a renewable energy source. The complex geological structure of its terrain has given rise to a large number of thermomineral springs and geothermal wells. Based on the existing measurements, the geothermal heat flow density in Serbia ranges from 80 to 120 mW/m2, which is above Europe's average (60 mW/m2). Currently, there are 66 projects in Serbia that directly use geothermal energy. There are an estimated 1005 geothermal heat pump units. Their power varies between 10 kW and 40 kW and they operate for 2860 full load hours per year. This paper deals with the development, current state and perspectives of geothermal energy utilization for heating in Serbia. To illustrate the current state of geothermal energy utilization in Serbia, spa settlements Vranjska Banja and Gornja Trepča, as well as the Bogatić Municipality have been singled out as examples of good practice. The presented analysis includes determining the available amount of geothermal energy and its utilization for district heating or heating of selected public facilities. The concept and methodology of the presented research are based on data collection through literature review, surveys and field research. The analysis confirms the cost-effectiveness of using geothermal energy and reveals numerous ecological advantages over other energy sources. However, it was concluded that аlthough there is potential, geothermal sources, as a renewable energy source, are used negligibly in Serbia.

Suggested Citation

  • Milanović Pešić, Ana & Brankov, Jovana & Denda, Stefan & Bjeljac, Željko & Micić, Jasna, 2022. "Geothermal energy in Serbia – Current state, utilization and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
  • Handle: RePEc:eee:rensus:v:162:y:2022:i:c:s1364032122003483
    DOI: 10.1016/j.rser.2022.112442
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122003483
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112442?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joksimović, Marko & Pavlović, Mila A., 2014. "Conditions and possibilities of direct utilisation of thermal-mineral waters in Raska region, Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 107-113.
    2. Ristić, Dušan & Vukoičić, Danijela & Nikolić, Milena & Milinčić, Miroljub & Kićović, Dušan, 2019. "Capacities and energy potential of thermal-mineral springs in the area of the Kopaonik tourist region (Serbia)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 129-138.
    3. Panić, Milena & Urošev, Marko & Milanović Pešić, Ana & Brankov, Jovana & Bjeljac, Željko, 2013. "Small hydropower plants in Serbia: Hydropower potential, current state and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 341-349.
    4. Antonijevic, Dragi & Komatina, Mirko, 2011. "Sustainable sub-geothermal heat pump heating in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3534-3538.
    5. Valjarević, Aleksandar & Srećković-Batoćanin, Danica & Valjarević, Dragana & Matović, Vesna, 2018. "A GIS-based method for analysis of a better utilization of thermal-mineral springs in the municipality of Kursumlija (Serbia)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 948-957.
    6. Zhu, Jialing & Hu, Kaiyong & Lu, Xinli & Huang, Xiaoxue & Liu, Ketao & Wu, Xiujie, 2015. "A review of geothermal energy resources, development, and applications in China: Current status and prospects," Energy, Elsevier, vol. 93(P1), pages 466-483.
    7. Hepbasli, Arif & Ozgener, Leyla, 2004. "Development of geothermal energy utilization in Turkey: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(5), pages 433-460, October.
    8. Melikoglu, Mehmet, 2017. "Geothermal energy in Turkey and around the World: A review of the literature and an analysis based on Turkey's Vision 2023 energy targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 485-492.
    9. Borović, Staša & Marković, Izidora, 2015. "Utilization and tourism valorisation of geothermal waters in Croatia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 52-63.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calise, F. & Di Fraia, S. & Macaluso, A. & Massarotti, N. & Vanoli, L., 2018. "A geothermal energy system for wastewater sludge drying and electricity production in a small island," Energy, Elsevier, vol. 163(C), pages 130-143.
    2. Pan, Shu-Yuan & Gao, Mengyao & Shah, Kinjal J. & Zheng, Jianming & Pei, Si-Lu & Chiang, Pen-Chi, 2019. "Establishment of enhanced geothermal energy utilization plans: Barriers and strategies," Renewable Energy, Elsevier, vol. 132(C), pages 19-32.
    3. Zhou, Luming & Zhu, Zhende & Xie, Xinghua & Hu, Yunjin, 2022. "Coupled thermal–hydraulic–mechanical model for an enhanced geothermal system and numerical analysis of its heat mining performance," Renewable Energy, Elsevier, vol. 181(C), pages 1440-1458.
    4. Nakomcic-Smaragdakis, Branka & Stajic, Tijana & Cepic, Zoran & Djuric, Slavko, 2012. "Geothermal energy potentials in the province of Vojvodina from the aspect of the direct energy utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5696-5706.
    5. Joseph Oyekale & Mario Petrollese & Vittorio Tola & Giorgio Cau, 2020. "Impacts of Renewable Energy Resources on Effectiveness of Grid-Integrated Systems: Succinct Review of Current Challenges and Potential Solution Strategies," Energies, MDPI, vol. 13(18), pages 1-48, September.
    6. Ji, Jiayan & Song, Xianzhi & Song, Guofeng & Xu, Fuqiang & Shi, Yu & Lv, Zehao & Li, Shuang & Yi, Junlin, 2023. "Study on fracture evolution model of the enhanced geothermal system under thermal-hydraulic-chemical-deformation coupling," Energy, Elsevier, vol. 269(C).
    7. Ristić, Dušan & Vukoičić, Danijela & Nikolić, Milena & Milinčić, Miroljub & Kićović, Dušan, 2019. "Capacities and energy potential of thermal-mineral springs in the area of the Kopaonik tourist region (Serbia)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 129-138.
    8. Wang, Yongzhen & Li, Chengjun & Zhao, Jun & Wu, Boyuan & Du, Yanping & Zhang, Jing & Zhu, Yilin, 2021. "The above-ground strategies to approach the goal of geothermal power generation in China: State of art and future researches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    9. Xia, Liangyu & Zhang, Yabo, 2019. "An overview of world geothermal power generation and a case study on China—The resource and market perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 411-423.
    10. Anand, R.S. & Li, Ang & Huang, Wenbo & Chen, Juanwen & Li, Zhibin & Ma, Qingshan & Jiang, Fangming, 2024. "Super-long gravity heat pipe for geothermal energy exploitation - A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    11. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    12. Kumar, Deepak & Katoch, S.S., 2014. "Harnessing ‘water tower’ into ‘power tower’: A small hydropower development study from an Indian prefecture in western Himalayas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 87-101.
    13. Ozcan, Mustafa, 2018. "The role of renewables in increasing Turkey's self-sufficiency in electrical energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2629-2639.
    14. Ramadan, Mohamad & Murr, Rabih & Khaled, Mahmoud & Olabi, Abdul Ghani, 2018. "Mixed numerical - Experimental approach to enhance the heat pump performance by drain water heat recovery," Energy, Elsevier, vol. 149(C), pages 1010-1021.
    15. Ryu, Jun & Bahadur, Jitendra & Hayase, Shuzi & Jeong, Sang Mun & Kang, Dong-Won, 2023. "Efficient and stable energy conversion using 2D/3D mixed Sn-perovskite photovoltaics with antisolvent engineering," Energy, Elsevier, vol. 278(PB).
    16. Luo, Jin & Zhang, Qi & Liang, Changming & Wang, Haiqi & Ma, Xinning, 2023. "An overview of the recent development of the Ground Source Heat Pump (GSHP) system in China," Renewable Energy, Elsevier, vol. 210(C), pages 269-279.
    17. Choudhary, Ram Bilash & Ansari, Sarfaraz & Majumder, Mandira, 2021. "Recent advances on redox active composites of metal-organic framework and conducting polymers as pseudocapacitor electrode material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    18. Vivek Aggarwal & Chandan Swaroop Meena & Ashok Kumar & Tabish Alam & Anuj Kumar & Arijit Ghosh & Aritra Ghosh, 2020. "Potential and Future Prospects of Geothermal Energy in Space Conditioning of Buildings: India and Worldwide Review," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    19. Macenić, M. & Kurevija, T. & Medved, I., 2020. "Novel geothermal gradient map of the Croatian part of the Pannonian Basin System based on data interpretation from 154 deep exploration wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    20. Ilyas Khurshid & Imran Afgan, 2021. "Investigation of Water Composition on Formation Damage and Related Energy Recovery from Geothermal Reservoirs: Geochemical and Geomechanics Insights," Energies, MDPI, vol. 14(21), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:162:y:2022:i:c:s1364032122003483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.