IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i9p2027-2033.html
   My bibliography  Save this article

A compact, high efficiency contra-rotating generator suitable for wind turbines in the urban environment

Author

Listed:
  • Booker, J.D.
  • Mellor, P.H.
  • Wrobel, R.
  • Drury, D.

Abstract

This paper is concerned with the design, development and performance testing of a permanent magnet (PM) generator for wind turbine applications in urban areas. The radially interacting armature windings and magnet array are carried on direct drive, contra-rotating rotors, resulting in a high torque density and efficiency. This topology also provides improved physical and mechanical characteristics such as compactness, low starting torque, elimination of gearboxes, low maintenance, low noise and vibration, and the potential for modular construction. The design brief required a 50kW continuous rated prototype generator, with a relative speed at the air-gap of 500rpm. A test rig has been instrumented to give measurements of the mechanical input (torque and speed) and electrical output (voltage, current and power) of the generator, as well as temperature readings from inside the generator using a wireless telemetry device. Peak power output was found to be 48kW at a contra-rotating speed of 500rpm, close to the design target, with an efficiency of 94%. It is anticipated that the generator will find application in a wide range of wind turbine designs suited to the urban environment, e.g. types sited on the top of buildings, as there is growing interest in providing quiet, low cost, clean electricity at point of use.

Suggested Citation

  • Booker, J.D. & Mellor, P.H. & Wrobel, R. & Drury, D., 2010. "A compact, high efficiency contra-rotating generator suitable for wind turbines in the urban environment," Renewable Energy, Elsevier, vol. 35(9), pages 2027-2033.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:9:p:2027-2033
    DOI: 10.1016/j.renene.2010.02.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110000522
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.02.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jung, Sung Nam & No, Tae-Soo & Ryu, Ki-Wahn, 2005. "Aerodynamic performance prediction of a 30kW counter-rotating wind turbine system," Renewable Energy, Elsevier, vol. 30(5), pages 631-644.
    2. Baroudi, Jamal A. & Dinavahi, Venkata & Knight, Andrew M., 2007. "A review of power converter topologies for wind generators," Renewable Energy, Elsevier, vol. 32(14), pages 2369-2385.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Didane, Djamal Hissein & Rosly, Nurhayati & Zulkafli, Mohd Fadhli & Shamsudin, Syariful Syafiq, 2018. "Performance evaluation of a novel vertical axis wind turbine with coaxial contra-rotating concept," Renewable Energy, Elsevier, vol. 115(C), pages 353-361.
    2. Radu Saulescu & Mircea Neagoe & Codruta Jaliu, 2018. "Conceptual Synthesis of Speed Increasers for Wind Turbine Conversion Systems," Energies, MDPI, vol. 11(9), pages 1-33, August.
    3. Mircea Neagoe & Radu Saulescu & Codruta Jaliu, 2019. "Design and Simulation of a 1 DOF Planetary Speed Increaser for Counter-Rotating Wind Turbines with Counter-Rotating Electric Generators," Energies, MDPI, vol. 12(9), pages 1-19, May.
    4. Nikolić, Vlastimir & Petković, Dalibor & Shamshirband, Shahaboddin & Ćojbašić, Žarko, 2015. "Adaptive neuro-fuzzy estimation of diffuser effects on wind turbine performance," Energy, Elsevier, vol. 89(C), pages 324-333.
    5. Michał Pacholczyk & Dariusz Karkosiński, 2020. "Parametric Study on a Performance of a Small Counter-Rotating Wind Turbine," Energies, MDPI, vol. 13(15), pages 1-17, July.
    6. Mircea Neagoe & Radu Saulescu & Codruta Jaliu & Petru A. Simionescu, 2020. "A Generalized Approach to the Steady-State Efficiency Analysis of Torque-Adding Transmissions Used in Renewable Energy Systems," Energies, MDPI, vol. 13(17), pages 1-18, September.
    7. Alnasir, Zuher & Kazerani, Mehrdad, 2013. "An analytical literature review of stand-alone wind energy conversion systems from generator viewpoint," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 597-615.
    8. Lidong Zhang & Kaiqi Zhu & Junwei Zhong & Ling Zhang & Tieliu Jiang & Shaohua Li & Zhongbin Zhang, 2018. "Numerical Investigations of the Effects of the Rotating Shaft and Optimization of Urban Vertical Axis Wind Turbines," Energies, MDPI, vol. 11(7), pages 1-25, July.
    9. Manganhar, Abdul Latif & Rajpar, Altaf Hussain & Luhur, Muhammad Ramzan & Samo, Saleem Raza & Manganhar, Mehtab, 2019. "Performance analysis of a savonius vertical axis wind turbine integrated with wind accelerating and guiding rotor house," Renewable Energy, Elsevier, vol. 136(C), pages 512-520.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    2. Dixon, Christopher & Reynolds, Steve & Rodley, David, 2016. "Micro/small wind turbine power control for electrolysis applications," Renewable Energy, Elsevier, vol. 87(P1), pages 182-192.
    3. Zhang, Cai Wen & Zhang, Tieling & Chen, Nan & Jin, Tongdan, 2013. "Reliability modeling and analysis for a novel design of modular converter system of wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 86-94.
    4. Amir, Asim & Amir, Aamir & Che, Hang Seng & Elkhateb, Ahmad & Rahim, Nasrudin Abd, 2019. "Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems," Renewable Energy, Elsevier, vol. 136(C), pages 1147-1163.
    5. Pavković, D. & Hoić, M. & Deur, J. & Petrić, J., 2014. "Energy storage systems sizing study for a high-altitude wind energy application," Energy, Elsevier, vol. 76(C), pages 91-103.
    6. Farihan Mohamad & Jiashen Teh & Ching-Ming Lai & Liang-Rui Chen, 2018. "Development of Energy Storage Systems for Power Network Reliability: A Review," Energies, MDPI, vol. 11(9), pages 1-19, August.
    7. Xie, Da & Lu, Yupu & Sun, Junbo & Gu, Chenghong, 2017. "Small signal stability analysis for different types of PMSGs connected to the grid," Renewable Energy, Elsevier, vol. 106(C), pages 149-164.
    8. Sareni, B. & Abdelli, A. & Roboam, X. & Tran, D.H., 2009. "Model simplification and optimization of a passive wind turbine generator," Renewable Energy, Elsevier, vol. 34(12), pages 2640-2650.
    9. Nasiri, M. & Milimonfared, J. & Fathi, S.H., 2015. "A review of low-voltage ride-through enhancement methods for permanent magnet synchronous generator based wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 399-415.
    10. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    11. Han, Wanlong & Yan, Peigang & Han, Wanjin & He, Yurong, 2015. "Design of wind turbines with shroud and lobed ejectors for efficient utilization of low-grade wind energy," Energy, Elsevier, vol. 89(C), pages 687-701.
    12. Karami, M. Amin & Farmer, Justin R. & Inman, Daniel J., 2013. "Parametrically excited nonlinear piezoelectric compact wind turbine," Renewable Energy, Elsevier, vol. 50(C), pages 977-987.
    13. Didane, Djamal Hissein & Rosly, Nurhayati & Zulkafli, Mohd Fadhli & Shamsudin, Syariful Syafiq, 2018. "Performance evaluation of a novel vertical axis wind turbine with coaxial contra-rotating concept," Renewable Energy, Elsevier, vol. 115(C), pages 353-361.
    14. Arifujjaman, Md., 2013. "Reliability comparison of power electronic converters for grid-connected 1.5kW wind energy conversion system," Renewable Energy, Elsevier, vol. 57(C), pages 348-357.
    15. Yang, Yaru & Li, Hua & Yao, Jin & Gao, Wenxiang, 2019. "Research on the characteristic parameters and rotor layout principle of dual-rotor horizontal axis wind turbine," Energy, Elsevier, vol. 189(C).
    16. No, T.S. & Kim, J.-E. & Moon, J.H. & Kim, S.J., 2009. "Modeling, control, and simulation of dual rotor wind turbine generator system," Renewable Energy, Elsevier, vol. 34(10), pages 2124-2132.
    17. Philippe Enrici & Ivan Meny & Daniel Matt, 2021. "Conceptual Study of Vernier Generator and Rectifier Association for Low Power Wind Energy Systems," Energies, MDPI, vol. 14(3), pages 1-20, January.
    18. Doukas, Haris & Karakosta, Charikleia & Psarras, John, 2009. "RES technology transfer within the new climate regime: A "helicopter" view under the CDM," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1138-1143, June.
    19. Lee, Seungmin & Son, Eunkuk & Lee, Soogab, 2013. "Velocity interference in the rear rotor of a counter-rotating wind turbine," Renewable Energy, Elsevier, vol. 54(C), pages 235-240.
    20. Narayana, Mahinsasa & Sunderland, Keith M. & Putrus, Ghanim & Conlon, Michael F., 2017. "Adaptive linear prediction for optimal control of wind turbines," Renewable Energy, Elsevier, vol. 113(C), pages 895-906.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:9:p:2027-2033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.