IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2385-d778642.html
   My bibliography  Save this article

Feasibility of Replacing Nuclear and Fossil Fuel Energy with Offshore Wind Energy: A Case for Taiwan

Author

Listed:
  • Cheng-Dar Yue

    (Department of Landscape Architecture, National Chiayi University, No. 300, Syuefu Rd., Chiayi 600, Taiwan)

  • I-Chun Wang

    (Department of Landscape Architecture, National Chiayi University, No. 300, Syuefu Rd., Chiayi 600, Taiwan)

  • Jhou-Sheng Huang

    (Department of Landscape Architecture, National Chiayi University, No. 300, Syuefu Rd., Chiayi 600, Taiwan)

Abstract

Adequate recognition of the offshore wind energy potential may help coastal states frame proper energy policies for replacing nuclear and fossil fuel energy. In this study, we examined the application potential of the offshore wind energy generated by 31 offshore wind farms designated by the Taiwanese government for future exploitation. Our findings indicate that offshore wind energy (through its substantial power generation volume and capacity factor) can play the most pivotal role in future power generation for Taiwan. A total of 59.3 TWh of electricity produced from offshore wind energy and solar photovoltaics (PVs) each year could replace the power generated from nuclear energy by 2025. Coal-fired power generation could be replaced by offshore wind energy and other renewables by 2032. The full exploitation of offshore wind farms as detailed in this study (103.4 TWh/year), together with other renewables, could reduce the share of liquefied natural gas-fired power generation to 5.6% of the total Taiwanese power supply by 2040. Realizing the ultimate target of 100% carbon-neutral power generation would rely mainly on a further decrease in electricity consumption per unit of gross domestic product and the expansion of offshore wind energy and geothermal energy.

Suggested Citation

  • Cheng-Dar Yue & I-Chun Wang & Jhou-Sheng Huang, 2022. "Feasibility of Replacing Nuclear and Fossil Fuel Energy with Offshore Wind Energy: A Case for Taiwan," Energies, MDPI, vol. 15(7), pages 1-20, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2385-:d:778642
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2385/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2385/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shakoor, Rabia & Hassan, Mohammad Yusri & Raheem, Abdur & Wu, Yuan-Kang, 2016. "Wake effect modeling: A review of wind farm layout optimization using Jensen׳s model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1048-1059.
    2. Chen, Falin & Lu, Shyi-Min & Wang, Eric & Tseng, Kuo-Tung, 2010. "Renewable energy in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2029-2038, September.
    3. Jacobson, Mark Z. & Delucchi, Mark A. & Cameron, Mary A. & Mathiesen, Brian V., 2018. "Matching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposes," Renewable Energy, Elsevier, vol. 123(C), pages 236-248.
    4. Yue, Cheng-Dar & Yang, Min-How, 2009. "Exploring the potential of wind energy for a coastal state," Energy Policy, Elsevier, vol. 37(10), pages 3925-3940, October.
    5. Chen, Falin & Lu, Shyi-Min & Tseng, Kuo-Tung & Lee, Si-Chen & Wang, Eric, 2010. "Assessment of renewable energy reserves in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2511-2528, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vijayaraja Loganathan & Dhanasekar Ravikumar & Rupa Kesavan & Kanakasri Venkatesan & Raadha Saminathan & Raju Kannadasan & Mahalingam Sudhakaran & Mohammed H. Alsharif & Zong Woo Geem & Junhee Hong, 2022. "A Case Study on Renewable Energy Sources, Power Demand, and Policies in the States of South India—Development of a Thermoelectric Model," Sustainability, MDPI, vol. 14(14), pages 1-29, July.
    2. Santanu Kumar Dash & Suprava Chakraborty & Michele Roccotelli & Umesh Kumar Sahu, 2022. "Hydrogen Fuel for Future Mobility: Challenges and Future Aspects," Sustainability, MDPI, vol. 14(14), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karunakaran Venkatesan & Uma Govindarajan & Padmanathan Kasinathan & Sanjeevikumar Padmanaban & Jens Bo Holm-Nielsen & Zbigniew Leonowicz, 2019. "Economic Analysis of HRES Systems with Energy Storage During Grid Interruptions and Curtailment in Tamil Nadu, India: A Hybrid RBFNOEHO Technique," Energies, MDPI, vol. 12(16), pages 1-26, August.
    2. Pasquale Contestabile & Vincenzo Ferrante & Diego Vicinanza, 2015. "Wave Energy Resource along the Coast of Santa Catarina (Brazil)," Energies, MDPI, vol. 8(12), pages 1-25, December.
    3. Feng, Chun-Chiang & Chang, Kuei-Feng & Lin, Jin-Xu & Lee, Tsung-Chen & Lin, Shih-Mo, 2022. "Toward green transition in the post Paris Agreement era: The case of Taiwan," Energy Policy, Elsevier, vol. 165(C).
    4. Shih-Chieh Huang & Shang-Lien Lo & Yen-Ching Lin, 2013. "To Re-Explore the Causality between Barriers to Renewable Energy Development: A Case Study of Wind Energy," Energies, MDPI, vol. 6(9), pages 1-24, August.
    5. Koua, Blaise K. & Koffi, Paul Magloire E. & Gbaha, Prosper & Touré, Siaka, 2015. "Present status and overview of potential of renewable energy in Cote d’Ivoire," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 907-914.
    6. Lu, Shyi-Min & Huang, May-Yao & Su, Pu-Ti & Tseng, Kuo-Tung & Chen, Falin, 2013. "Development strategy of green energy industry for Taipei—A modern medium-sized city," Energy Policy, Elsevier, vol. 62(C), pages 484-492.
    7. Chang, Ching-Ter & Lee, Hsing-Chen, 2016. "Taiwan's renewable energy strategy and energy-intensive industrial policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 456-465.
    8. Pasquale Contestabile & Enrico Di Lauro & Paolo Galli & Cesare Corselli & Diego Vicinanza, 2017. "Offshore Wind and Wave Energy Assessment around Malè and Magoodhoo Island (Maldives)," Sustainability, MDPI, vol. 9(4), pages 1-24, April.
    9. Chankook Park & Minkyu Kim, 2021. "A Study on the Characteristics of Academic Topics Related to Renewable Energy Using the Structural Topic Modeling and the Weak Signal Concept," Energies, MDPI, vol. 14(5), pages 1-24, March.
    10. Chang, C.T. & Costa, M. & La Villetta, M. & Macaluso, A. & Piazzullo, D. & Vanoli, L., 2019. "Thermo-economic analyses of a Taiwanese combined CHP system fuelled with syngas from rice husk gasification," Energy, Elsevier, vol. 167(C), pages 766-780.
    11. Hadadpour, Sanaz & Etemad-Shahidi, Amir & Jabbari, Ebrahim & Kamranzad, Bahareh, 2014. "Wave energy and hot spots in Anzali port," Energy, Elsevier, vol. 74(C), pages 529-536.
    12. Bilgili, Mehmet & Ozbek, Arif & Sahin, Besir & Kahraman, Ali, 2015. "An overview of renewable electric power capacity and progress in new technologies in the world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 323-334.
    13. Islam, A.B.M. Saiful & Jameel, Mohammed & Jumaat, Mohd Zamin & Shirazi, S.M. & Salman, Firas A., 2012. "Review of offshore energy in Malaysia and floating Spar platform for sustainable exploration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6268-6284.
    14. Santanu Kumar Dash & Suprava Chakraborty & Michele Roccotelli & Umesh Kumar Sahu, 2022. "Hydrogen Fuel for Future Mobility: Challenges and Future Aspects," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    15. Zhuang, Dafang & Jiang, Dong & Liu, Lei & Huang, Yaohuan, 2011. "Assessment of bioenergy potential on marginal land in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1050-1056, February.
    16. Izadyar, Nima & Ong, Hwai Chyuan & Chong, W.T. & Leong, K.Y., 2016. "Resource assessment of the renewable energy potential for a remote area: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 908-923.
    17. Lu, Shin-Li, 2019. "Integrating heuristic time series with modified grey forecasting for renewable energy in Taiwan," Renewable Energy, Elsevier, vol. 133(C), pages 1436-1444.
    18. Kao, Shih-Ming & Pearre, Nathaniel S., 2017. "Administrative arrangement for offshore wind power developments in Taiwan: Challenges and prospects," Energy Policy, Elsevier, vol. 109(C), pages 463-472.
    19. Lee, Tsung-Han & Huang, Sheng-Rung & Chen, Chiun-Hsun, 2013. "The experimental study on biogas power generation enhanced by using waste heat to preheat inlet gases," Renewable Energy, Elsevier, vol. 50(C), pages 342-347.
    20. Chou, Shuo-Yan & Nguyen, Thi Anh Tuyet & Yu, Tiffany Hui-Kuang & Phan, Nguyen Ky Phuc, 2015. "Financial assessment of government subsidy policy on photovoltaic systems for industrial users: A case study in Taiwan," Energy Policy, Elsevier, vol. 87(C), pages 505-516.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2385-:d:778642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.