IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v207y2025ics1364032124007032.html
   My bibliography  Save this article

Synthesis of biomass-mediated hierarchical Zeolite socony Mobil–5 and their selectivity for lignin conversion to bio-oils: Review and perspective

Author

Listed:
  • Li, Ruijin
  • Huang, Danlian
  • Wei, Zhen
  • Chen, Yashi
  • Wang, Guangfu
  • Zhou, Wei
  • Xiao, Ruihao
  • Xu, Wenbo

Abstract

Conversion of lignin biomass to bio-oil is currently a very industrially attractive strategy due to energy shortages and resource scarcity. Combining the advantages of mesoporous structure and strong acidity, hierarchical zeolites are considered the promising catalytic materials that have attracted great attention in the field of crude oil cracking. This work reviewed the effect of biomass-derived compounds as templates on the pore structure and acidity of the molecular sieves, and evaluated the bio-oil quality of these biomass-mediated hierarchical molecular sieves acting on lignin or lignin derivatives and their selectivity. The morphology, particle size, and properties of biomass templates are intimately tied to the secondary porosity of hierarchical zeolites, enabling the creation of unprecedented structural features and properties within the hierarchical zeolite. The resulting hierarchical zeolite exhibits exceptional crystallinity and superior mesoporous connectivity. In addition, hierarchical zeolites synthesized from biomass templates are competitive in improving the catalytic performance of lignin degradation. When the acid content is high enough, the mesopore content and pore size become key parameters in determining the catalytic efficiency to selectively improve the bio-oil quality of lignin and its derivatives. Finally, a systematic and comprehensive outlook on the opportunities and challenges of biomass-mediated hierarchical zeolites in the synthesis and conversion of lignin to bio-oil was presented from several perspectives. This review intends to provide theoretical guidance for green synthesis of hierarchical zeolites and to propose a feasible strategy for the conversion of lignin into bio-oil.

Suggested Citation

  • Li, Ruijin & Huang, Danlian & Wei, Zhen & Chen, Yashi & Wang, Guangfu & Zhou, Wei & Xiao, Ruihao & Xu, Wenbo, 2025. "Synthesis of biomass-mediated hierarchical Zeolite socony Mobil–5 and their selectivity for lignin conversion to bio-oils: Review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:rensus:v:207:y:2025:i:c:s1364032124007032
    DOI: 10.1016/j.rser.2024.114977
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124007032
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114977?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xiangping & Chen, Guanyi & Liu, Caixia & Ma, Wenchao & Yan, Beibei & Zhang, Jianguang, 2017. "Hydrodeoxygenation of lignin-derived bio-oil using molecular sieves supported metal catalysts: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 296-308.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nanduri, Arvind & Kulkarni, Shreesh S. & Mills, Patrick L., 2021. "Experimental techniques to gain mechanistic insight into fast pyrolysis of lignocellulosic biomass: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Ma, Wenchao & Liu, Bin & Zhang, Ruixue & Gu, Tianbao & Ji, Xiang & Zhong, Lei & Chen, Guanyi & Ma, Longlong & Cheng, Zhanjun & Li, Xiangping, 2018. "Co-upgrading of raw bio-oil with kitchen waste oil through fluid catalytic cracking (FCC)," Applied Energy, Elsevier, vol. 217(C), pages 233-240.
    3. Jahromi, Hossein & Agblevor, Foster A., 2017. "Upgrading of pinyon-juniper catalytic pyrolysis oil via hydrodeoxygenation," Energy, Elsevier, vol. 141(C), pages 2186-2195.
    4. Agus Haryanto & Wahyu Hidayat & Udin Hasanudin & Dewi Agustina Iryani & Sangdo Kim & Sihyun Lee & Jiho Yoo, 2021. "Valorization of Indonesian Wood Wastes through Pyrolysis: A Review," Energies, MDPI, vol. 14(5), pages 1-25, March.
    5. Jin, Wei & Gandara-Loe, Jesus & Pastor-Pérez, Laura & Villora-Picó, Juan J. & Sepúlveda-Escribano, Antonio & Rinaldi, Roberto & Reina, Tomas Ramirez, 2023. "Guaiacol hydrotreatment in an integrated APR-HDO process: Exploring the promoting effect of platinum on Ni–Pt catalysts and assessing methanol and glycerol as hydrogen sources," Renewable Energy, Elsevier, vol. 215(C).
    6. Sharma, Vinit & Getahun, Tokuma & Verma, Minal & Villa, Alberto & Gupta, Neeraj, 2020. "Carbon based catalysts for the hydrodeoxygenation of lignin and related molecules: A powerful tool for the generation of non-petroleum chemical products including hydrocarbons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
    8. Arun, J. & Raghu, R. & Suhail Madhar Hanif, S. & Thilak, P.G. & Sridhar, D. & Nirmala, N. & Dawn, S.S. & Sivaramakrishnan, R. & Chi, Nguyen Thuy Lan & Pugazhendhi, Arivalagan, 2022. "A comparative review on photo and mixotrophic mode of algae cultivation: Thermochemical processing of biomass, necessity of bio-oil upgrading, challenges and future roadmaps," Applied Energy, Elsevier, vol. 325(C).
    9. Li, Xin & Luo, Xingyi & Jin, Yangbin & Li, Jinyan & Zhang, Hongdan & Zhang, Aiping & Xie, Jun, 2018. "Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable bio-oils to second generation biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3762-3797.
    10. Wu, Yujian & Xu, Xiwei & Sun, Yan & Jiang, Enchen & Fan, Xudong & Tu, Ren & Wang, Jiamin, 2020. "Gas-phase hydrodeoxygenation of guaiacol over Ni-based HUSY zeolite catalysts under atmospheric H2 pressure," Renewable Energy, Elsevier, vol. 152(C), pages 1380-1390.
    11. Ha, Jeong-Myeong & Hwang, Kyung-Ran & Kim, Young-Min & Jae, Jungho & Kim, Kwang Ho & Lee, Hyung Won & Kim, Jae-Young & Park, Young-Kwon, 2019. "Recent progress in the thermal and catalytic conversion of lignin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 422-441.
    12. Li, Xiangping & Chen, Lei & Chen, Guanyi & Zhang, Jianguang & Liu, Juping, 2020. "The relationship between acidity, dispersion of nickel, and performance of Ni/Al-SBA-15 catalyst on eugenol hydrodeoxygenation," Renewable Energy, Elsevier, vol. 149(C), pages 609-616.
    13. Rozzeta Dolah & Rohit Karnik & Halimaton Hamdan, 2021. "A Comprehensive Review on Biofuels from Oil Palm Empty Bunch (EFB): Current Status, Potential, Barriers and Way Forward," Sustainability, MDPI, vol. 13(18), pages 1-29, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:207:y:2025:i:c:s1364032124007032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.