IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v206y2024ics1364032124005847.html
   My bibliography  Save this article

A model for energy predictions and diagnostics of large-scale photovoltaic systems based on electric data and thermal imaging of the PV fields

Author

Listed:
  • Parenti, Mattia
  • Fossa, Marco
  • Delucchi, Lorenzo

Abstract

The aim of this investigation is the development of robust models for the performance prediction and automatic monitoring of large photovoltaic systems, based on historical and real-time electric and thermal data. This issue is increasingly important due to the worldwide diffusion of large photovoltaic systems and their need to identify and predict failures and malfunctions, in order to promptly assess the convenience of maintenance actions. The present model describes the response to irradiance and temperature conditions of both modules and inverters and also it is able to predict shading conditions able to affect the energy yield. The model has been validated against real electric measurements in 6 large PV plants located in southern Italy and it demonstrated to be able to predict the real time power production within a 4.1 % error. Even more importantly, the model and its comparison with subhourly measurements over several years has demonstrated its effectiveness in detecting downtime conditions caused by inverter or string problems. Simulations and measurements revealed that missed energy production due to electrical grid coupling downtime can exceed 50 % on certain days and that the shading conditions (up to 5 % of the daily energy production) can be easily detected and separated from component problems, thus avoiding false alarms. Finally, the analysis of aerial infrared images allowed to further test the model in failure detection capability, assess the relationship between thermal anomalies and underperformance conditions and in predicting the yearly deterioration rate at the PV plants.

Suggested Citation

  • Parenti, Mattia & Fossa, Marco & Delucchi, Lorenzo, 2024. "A model for energy predictions and diagnostics of large-scale photovoltaic systems based on electric data and thermal imaging of the PV fields," Renewable and Sustainable Energy Reviews, Elsevier, vol. 206(C).
  • Handle: RePEc:eee:rensus:v:206:y:2024:i:c:s1364032124005847
    DOI: 10.1016/j.rser.2024.114858
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124005847
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114858?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:206:y:2024:i:c:s1364032124005847. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.