IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v202y2024ics1364032124004131.html
   My bibliography  Save this article

Green separation of azeotropes in dimethyl carbonate synthesis by transesterification

Author

Listed:
  • Yan, Min
  • Shen, Yuanyuan
  • Wang, Shuai
  • Zhu, Zhaoyou
  • Cui, Peizhe
  • Wang, Yinglong

Abstract

Dimethyl carbonate, a pivotal organic solvent, has experienced significant growth in consumption and an expansion of production capacity in China in recent years. The primary industrial production methods, including transesterification, carbonylation, and urea alcoholysis, are accompanied by dedicated production facilities. This study conducts a comparative assessment of these processes, scrutinizing their technical merits and associated challenges to provide strategic guidance for dimethyl carbonate production within the nation. The review provides a comprehensive summary of dimethyl carbonate synthesis methods. Focusing on the separation of azeotropes during dimethyl carbonate synthesis via transesterification, it suggests the potential integration of conventional energy-saving technology with pervaporation separation to separate dimethyl carbonate and methanol. The review culminates in a concise summary and analysis of forthcoming prospects and obstacles inherent to this hybrid strategy. Realizing the effective integration of pervaporation technology with established energy-saving techniques for the efficient and ecologically sustainable separation necessitates further exploration and practical implementation.

Suggested Citation

  • Yan, Min & Shen, Yuanyuan & Wang, Shuai & Zhu, Zhaoyou & Cui, Peizhe & Wang, Yinglong, 2024. "Green separation of azeotropes in dimethyl carbonate synthesis by transesterification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:rensus:v:202:y:2024:i:c:s1364032124004131
    DOI: 10.1016/j.rser.2024.114687
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124004131
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114687?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shahandeh, Hossein & Jafari, Mina & Kasiri, Norollah & Ivakpour, Javad, 2015. "Economic optimization of heat pump-assisted distillation columns in methanol-water separation," Energy, Elsevier, vol. 80(C), pages 496-508.
    2. Dawodu, Folasegun A. & Ayodele, Olubunmi O. & Xin, Jiayu & Zhang, Suojiang, 2014. "Dimethyl carbonate mediated production of biodiesel at different reaction temperatures," Renewable Energy, Elsevier, vol. 68(C), pages 581-587.
    3. Zhang, Hongru & Wang, Shuai & Tang, Jiaxuan & Li, Ningning & Li, Yanan & Cui, Peizhe & Wang, Yinglong & Zheng, Shiqing & Zhu, Zhaoyou & Ma, Yixin, 2021. "Multi-objective optimization and control strategy for extractive distillation with dividing-wall column/pervaporation for separation of ternary azeotropes based on mechanism analysis," Energy, Elsevier, vol. 229(C).
    4. Yang, Ao & Sun, Shirui & Eslamimanesh, Ali & Wei, Shun'an & Shen, Weifeng, 2019. "Energy-saving investigation for diethyl carbonate synthesis through the reactive dividing wall column combining the vapor recompression heat pump or different pressure thermally coupled technique," Energy, Elsevier, vol. 172(C), pages 320-332.
    5. Kumar, Navneet & Srivastava, Vimal Chandra, 2021. "Dimethyl carbonate production via transesterification reaction using nitrogen functionalized graphene oxide nanosheets," Renewable Energy, Elsevier, vol. 175(C), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Hao & Zhang, Yao Jun & He, Pan Yang & Li, Chan Juan, 2019. "Synthesis, characterization and modification of monolithic ZSM-5 from geopolymer for CO2 capture: Experiments and DFT calculations," Energy, Elsevier, vol. 179(C), pages 422-430.
    2. Xu, Min & Cai, Jun & Guo, Jiangfeng & Huai, Xiulan & Liu, Zhigang & Zhang, Hang, 2017. "Technical and economic feasibility of the Isopropanol-Acetone-Hydrogen chemical heat pump based on a lab-scale prototype," Energy, Elsevier, vol. 139(C), pages 1030-1039.
    3. Panchal, Balaji & Chang, Tao & Qin, Shenjun & Sun, Yuzhuang & Wang, Jinxi & Bian, Kai, 2020. "Optimization and kinetics of tung nut oil transesterification with methanol using novel solid acidic ionic liquid polymer as catalyst for methyl ester synthesis," Renewable Energy, Elsevier, vol. 151(C), pages 796-804.
    4. Keon Hee Kim & Eun Yeol Lee, 2017. "Environmentally-Benign Dimethyl Carbonate-Mediated Production of Chemicals and Biofuels from Renewable Bio-Oil," Energies, MDPI, vol. 10(11), pages 1-15, November.
    5. Kazemi, Abolghasem & Mehrabani-Zeinabad, Arjomand & Beheshti, Masoud, 2018. "Recently developed heat pump assisted distillation configurations: A comparative study," Applied Energy, Elsevier, vol. 211(C), pages 1261-1281.
    6. Kim, Jeongdong & Qi, Meng & Park, Jinwoo & Moon, Il, 2023. "Revealing the impact of renewable uncertainty on grid-assisted power-to-X: A data-driven reliability-based design optimization approach," Applied Energy, Elsevier, vol. 339(C).
    7. Cheng, Haiyang & Wang, Yangyang & Wang, Wenxin & Wen, Chunhe & Wei, Xuewen & Wang, Yu & Wang, Yinglong & Cui, Peizhe & Zhu, Zhaoyou, 2023. "Economic, environmental, exergy (3E) analysis and multi-objective genetic algorithm optimization of efficient and energy-saving separation of diethoxymethane/toluene/ethanol by extractive distillation," Energy, Elsevier, vol. 284(C).
    8. Zhai, Jian & Xie, Hongfei & Chen, Xin & Peng, Zekong & Sun, Qingbo & Li, Jinwen, 2024. "Design and energy-saving strategy of sustainable pressure-swing distillation with thermally and electrically coupled intensification for separating ternary mixture with multiple azeotropes," Energy, Elsevier, vol. 295(C).
    9. Khalili, N. & Kasiri, N. & Ivakpour, J. & Khalili-Garakani, A. & Khanof, M.H., 2020. "Optimal configuration of ternary distillation columns using heat integration with external heat exchangers," Energy, Elsevier, vol. 191(C).
    10. Yang, Deming & Wan, Dehao & Yun, Yi & Yang, Shuzhuang, 2023. "Energy-saving distillation process for mixed trichlorobenzene based on ORC coupled MVR heat pump technology," Energy, Elsevier, vol. 262(PB).
    11. Kim, Young Han, 2015. "Energy saving of side-column DWCs for quaternary separation," Energy, Elsevier, vol. 86(C), pages 617-626.
    12. Qi, Meng & Vo, Dat Nguyen & Yu, Haoshui & Shu, Chi-Min & Cui, Chengtian & Liu, Yi & Park, Jinwoo & Moon, Il, 2023. "Strategies for flexible operation of power-to-X processes coupled with renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    13. Sun, Shirui & Chun, Wei & Yang, Ao & Shen, Weifeng & Cui, Peizhe & Ren, Jingzheng, 2020. "The separation of ternary azeotropic mixture: Thermodynamic insight and improved multi-objective optimization," Energy, Elsevier, vol. 206(C).
    14. Philipp, Matthias & Schumm, Gregor & Peesel, Ron-Hendrik & Walmsley, Timothy G. & Atkins, Martin J. & Schlosser, Florian & Hesselbach, Jens, 2018. "Optimal energy supply structures for industrial food processing sites in different countries considering energy transitions," Energy, Elsevier, vol. 146(C), pages 112-123.
    15. Zhang, Huafu & Tong, Lige & Zhang, Zhentao & Song, Yanchang & Yang, Junling & Yue, Yunkai & Wu, Zhenqun & Wang, Youdong & Yu, Ze & Zhang, Junhao, 2023. "A integrated mechanical vapor compression enrichment system of radioactive wastewater: Experimental study, model optimization and performance prediction," Energy, Elsevier, vol. 282(C).
    16. Wang, Lili & Zhao, Jun & Teng, Junfeng & Dong, Shilong & Wang, Yinglong & Xiang, Shuguang & Sun, Xiaoyan, 2022. "Study on an energy-saving process for separation ethylene elycol mixture through heat-pump, heat-integration and ORC driven by waste-heat," Energy, Elsevier, vol. 243(C).
    17. Keon Hee Kim & Eun Yeol Lee, 2017. "Simultaneous Production of Transformer Insulating Oil and Value-Added Glycerol Carbonates from Soybean Oil by Lipase-Catalyzed Transesterification in Dimethyl Carbonate," Energies, MDPI, vol. 11(1), pages 1-11, December.
    18. Kiss, Anton A. & Smith, Robin, 2020. "Rethinking energy use in distillation processes for a more sustainable chemical industry," Energy, Elsevier, vol. 203(C).
    19. Kazemi, Abolghasem & Mehrabani-Zeinabad, Arjomand, 2016. "Post combustion carbon capture: Does optimization of the processing system based on energy and utility requirements warrant the lowest possible costs?," Energy, Elsevier, vol. 112(C), pages 353-363.
    20. Gudjonsdottir, V. & Infante Ferreira, C.A. & Rexwinkel, Glenn & Kiss, Anton A., 2017. "Enhanced performance of wet compression-resorption heat pumps by using NH3-CO2-H2O as working fluid," Energy, Elsevier, vol. 124(C), pages 531-542.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:202:y:2024:i:c:s1364032124004131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.