IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v19y2013icp52-63.html
   My bibliography  Save this article

Vision 2023: Assessing the feasibility of electricity and biogas production from municipal solid waste in Turkey

Author

Listed:
  • Melikoglu, Mehmet

Abstract

Turkey imports most of its energy. However, according to the recently avowed Vision 2023 agenda the country also plans to produce 30% of its electricity demand from renewable energy sources by 2023. Meanwhile, each year around 25milliontonnes of municipal solid waste (MSW) is generated nationwide. Not only MSW pollutes the environment handling, processing and storage requires precious labour and capital. In that context, a synergistic solution can be created between MSW management and energy supply. In this study, economics and environmental impacts of electricity generation from MSW via (i) direct combustion and (ii) biogas harnessing in 81 cities of Turkey is analysed in detail for a period between 2012 and 2023. Firstly, it is estimated that nationwide 8500GWh of electricity could have been generated by direct combustion of MSW in 2012. This is predicted to rise 9700GWh in 2023. It is calculated that 3100millionm3 of methane would be emitted from the landfills of Turkey in 2012. If no action taken this would rise to 3600millionm3 in 2023. Furthermore, it is estimated that by capturing 25% of this methane via landfill bioreactors 2900GWh or 0.5% of Turkey's annual electricity demand could be supplied in 2023. Simulations also showed that by realizing apposite landfill investments by 2023 annual energy savings worth 200–900 million € could be generated from MSW. Consequently, this could lead to greenhouse gas emission savings up to 11.0milliontonnes of CO2 per annum.

Suggested Citation

  • Melikoglu, Mehmet, 2013. "Vision 2023: Assessing the feasibility of electricity and biogas production from municipal solid waste in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 52-63.
  • Handle: RePEc:eee:rensus:v:19:y:2013:i:c:p:52-63
    DOI: 10.1016/j.rser.2012.11.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112006284
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.11.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kearney, Colm, 2012. "Emerging markets research: Trends, issues and future directions," Emerging Markets Review, Elsevier, vol. 13(2), pages 159-183.
    2. Ediger, Volkan S. & Akar, Sertac, 2007. "ARIMA forecasting of primary energy demand by fuel in Turkey," Energy Policy, Elsevier, vol. 35(3), pages 1701-1708, March.
    3. Irmi Seidl & Clem A. Tisdell, 2003. "Carrying capacity reconsidered: from Malthus' population theory to cultural carrying capacity," Chapters, in: Ecological and Environmental Economics, chapter 13, pages 192-206, Edward Elgar Publishing.
    4. Themelis, Nickolas J. & Ulloa, Priscilla A., 2007. "Methane generation in landfills," Renewable Energy, Elsevier, vol. 32(7), pages 1243-1257.
    5. Jumbe, Charles B. L., 2004. "Cointegration and causality between electricity consumption and GDP: empirical evidence from Malawi," Energy Economics, Elsevier, vol. 26(1), pages 61-68, January.
    6. Zamorano, Montserrat & Ignacio Pérez Pérez, Jorge & Aguilar Pavés, Ignacio & Ramos Ridao, Ángel, 2007. "Study of the energy potential of the biogas produced by an urban waste landfill in Southern Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 909-922, June.
    7. Erdogdu, Erkan, 2007. "Electricity demand analysis using cointegration and ARIMA modelling: A case study of Turkey," Energy Policy, Elsevier, vol. 35(2), pages 1129-1146, February.
    8. Popov, Viktor, 2005. "A new landfill system for cheaper landfill gas purification," Renewable Energy, Elsevier, vol. 30(7), pages 1021-1029.
    9. Ozturk, Harun Kemal & Ceylan, Halim & Canyurt, Olcay Ersel & Hepbasli, Arif, 2005. "Electricity estimation using genetic algorithm approach: a case study of Turkey," Energy, Elsevier, vol. 30(7), pages 1003-1012.
    10. Kankal, Murat & AkpInar, Adem & Kömürcü, Murat Ihsan & Özsahin, Talat Sükrü, 2011. "Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables," Applied Energy, Elsevier, vol. 88(5), pages 1927-1939, May.
    11. Tugrul Ogulata, R., 2003. "Energy sector and wind energy potential in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(6), pages 469-484, December.
    12. Melikoglu, Mehmet, 2013. "Vision 2023: Feasibility analysis of Turkey's renewable energy projection," Renewable Energy, Elsevier, vol. 50(C), pages 570-575.
    13. Murphy, J.D. & McKeogh, E., 2004. "Technical, economic and environmental analysis of energy production from municipal solid waste," Renewable Energy, Elsevier, vol. 29(7), pages 1043-1057.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Melikoglu, Mehmet, 2016. "The role of renewables and nuclear energy in Turkey׳s Vision 2023 energy targets: Economic and technical scrutiny," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1-12.
    2. Melikoglu, Mehmet, 2017. "Geothermal energy in Turkey and around the World: A review of the literature and an analysis based on Turkey's Vision 2023 energy targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 485-492.
    3. Melikoglu, Mehmet, 2013. "Vision 2023: Forecasting Turkey's natural gas demand between 2013 and 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 393-400.
    4. Halkos, George E. & Tzeremes, Nickolaos G., 2014. "The effect of electricity consumption from renewable sources on countries׳ economic growth levels: Evidence from advanced, emerging and developing economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 166-173.
    5. Melikoglu, Mehmet, 2017. "Pumped hydroelectric energy storage: Analysing global development and assessing potential applications in Turkey based on Vision 2023 hydroelectricity wind and solar energy targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 146-153.
    6. Esfilar, Reza & Bagheri, Mehdi & Golestani, Behrooz, 2021. "Technoeconomic feasibility review of hybrid waste to energy system in the campus: A case study for the University of Victoria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    7. Dehkordi, Seyed Mohammad Mehdi Noorbakhsh & Jahromi, Ahmad Reza Taghipour & Ferdowsi, Ali & Shumal, Mohammad & Dehnavi, Ali, 2020. "Investigation of biogas production potential from mechanical separated municipal solid waste as an approach for developing countries (case study: Isfahan-Iran)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    8. Aguilar-Virgen, Quetzalli & Taboada-González, Paul & Ojeda-Benítez, Sara & Cruz-Sotelo, Samantha, 2014. "Power generation with biogas from municipal solid waste: Prediction of gas generation with in situ parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 412-419.
    9. Marius PETRESCU & Ionica ONCIOIU & Anca-Gabriela PETRESCU & Florentina-Raluca BÎLCAN & Mihai PETRESCU & Dumitru-Alexandru STOICA, 2021. "Estimating the Dynamics of Household Waste Management in Turkey," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 129-143, June.
    10. Ozan Akdağ & Celaleddin Yeroglu, 2020. "An evaluation of an offshore energy installation for the Black Sea region of Turkey and the effects on a regional decrease in greenhouse gas emissions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(3), pages 531-544, June.
    11. Roy, S. & Lam, Y.F. & Hossain, M.U. & Chan, J.C.L., 2022. "Comprehensive evaluation of electricity generation and emission reduction potential in the power sector using renewable alternatives in Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    12. Melikoglu, Mehmet, 2017. "Vision 2023: Status quo and future of biomass and coal for sustainable energy generation in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 800-808.
    13. Melikoglu, Mehmet, 2013. "Hydropower in Turkey: Analysis in the view of Vision 2023," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 503-510.
    14. Robert Sidełko, 2021. "Application of Technological Processes to Create a Unitary Model for Energy Recovery from Municipal Waste," Energies, MDPI, vol. 14(11), pages 1-15, May.
    15. Rajaeifar, Mohammad Ali & Ghanavati, Hossein & Dashti, Behrouz B. & Heijungs, Reinout & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2017. "Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 414-439.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Melikoglu, Mehmet, 2013. "Vision 2023: Forecasting Turkey's natural gas demand between 2013 and 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 393-400.
    2. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    3. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    4. Erdogdu, Erkan, 2010. "Natural gas demand in Turkey," Applied Energy, Elsevier, vol. 87(1), pages 211-219, January.
    5. Aydin, Gokhan, 2014. "Modeling of energy consumption based on economic and demographic factors: The case of Turkey with projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 382-389.
    6. Dilaver, Zafer & Hunt, Lester C., 2011. "Industrial electricity demand for Turkey: A structural time series analysis," Energy Economics, Elsevier, vol. 33(3), pages 426-436, May.
    7. Kankal, Murat & AkpInar, Adem & Kömürcü, Murat Ihsan & Özsahin, Talat Sükrü, 2011. "Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables," Applied Energy, Elsevier, vol. 88(5), pages 1927-1939, May.
    8. Kaytez, Fazil, 2020. "A hybrid approach based on autoregressive integrated moving average and least-square support vector machine for long-term forecasting of net electricity consumption," Energy, Elsevier, vol. 197(C).
    9. Melikoglu, Mehmet, 2013. "Vision 2023: Feasibility analysis of Turkey's renewable energy projection," Renewable Energy, Elsevier, vol. 50(C), pages 570-575.
    10. Syed Aziz Ur Rehman & Yanpeng Cai & Rizwan Fazal & Gordhan Das Walasai & Nayyar Hussain Mirjat, 2017. "An Integrated Modeling Approach for Forecasting Long-Term Energy Demand in Pakistan," Energies, MDPI, vol. 10(11), pages 1-23, November.
    11. Gómez, Antonio & Zubizarreta, Javier & Rodrigues, Marcos & Dopazo, César & Fueyo, Norberto, 2010. "Potential and cost of electricity generation from human and animal waste in Spain," Renewable Energy, Elsevier, vol. 35(2), pages 498-505.
    12. Wang, Shuai & Yu, Lean & Tang, Ling & Wang, Shouyang, 2011. "A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China," Energy, Elsevier, vol. 36(11), pages 6542-6554.
    13. Gulay, Emrah & Duru, Okan, 2020. "Hybrid modeling in the predictive analytics of energy systems and prices," Applied Energy, Elsevier, vol. 268(C).
    14. Tutun, Salih & Chou, Chun-An & Canıyılmaz, Erdal, 2015. "A new forecasting framework for volatile behavior in net electricity consumption: A case study in Turkey," Energy, Elsevier, vol. 93(P2), pages 2406-2422.
    15. Habeebur Rahman & Iniyan Selvarasan & Jahitha Begum A, 2018. "Short-Term Forecasting of Total Energy Consumption for India-A Black Box Based Approach," Energies, MDPI, vol. 11(12), pages 1-21, December.
    16. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    17. El Hanandeh, Ali & El Zein, Abbas, 2011. "Are the aims of increasing the share of green electricity generation and reducing GHG emissions always compatible?," Renewable Energy, Elsevier, vol. 36(11), pages 3031-3036.
    18. Emre Yakut & Ezel Özkan, 2020. "Modeling of Energy Consumption Forecast with Economic Indicators Using Particle Swarm Optimization and Genetic Algorithm: An Application in Turkey between 1979 and 2050," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 8(1), pages 59-78, June.
    19. Elsland, Rainer & Divrak, Can & Fleiter, Tobias & Wietschel, Martin, 2014. "Turkey’s Strategic Energy Efficiency Plan – An ex ante impact assessment of the residential sector," Energy Policy, Elsevier, vol. 70(C), pages 14-29.
    20. Sozen, Adnan & Nalbant, Muammer, 2007. "Situation of Turkey's energy indicators among the EU member states," Energy Policy, Elsevier, vol. 35(10), pages 4993-5002, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:19:y:2013:i:c:p:52-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.