IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v199y2024ics1364032124002296.html
   My bibliography  Save this article

Impact of various 2D MXene surface terminating groups in energy conversion

Author

Listed:
  • Miao, Baoji
  • Bashir, Tariq
  • Zhang, Hanlu
  • Ali, Tariq
  • Raza, Saleem
  • He, Delong
  • Liu, Yu
  • Bai, Jinbo

Abstract

Transition metal nitrides and/or carbides (MXenes) are a class of two dimensional (2D) materials with remarkable mechanical strength, carrier mobility, and other desirable characteristics. It has been suggested that the characteristics of these materials can be manipulated by adjusting the proportions of surface terminators like –O, –OH, –F, -Br, –I, –S, -Se, -Te, and –NH2. The Gibbs free energy and work function (Φ) of the adsorbed intermediate, specifically H∗ (∣△GH∗∣), on MXene can be regulated by surface terminating groups (-O, –OH, –F, -Cl, and -Br). This characteristic enables the utilization of MXene in catalytic applications. This study provides a comprehensive overview of the current advancements made in the morphological design of 2D MXene materials. The focus of this review is mostly on the critical examination of the influence of termination groups on catalytic activity and the selectivity of products. Ti3C2Tx MXene engineering design is extensively examined, with particular emphasis on hierarchical structures, quantum dots, and monolayers. To comprehensively comprehend the fundamental catalytic structure of Ti3C2Tx MXenes and the impact of various termination groups on the energy conversion process, it is essential to begin with an extensive literature analysis. This review encompasses an examination of their catalytic capabilities as well as an exploration of the mechanisms underlying the fabrication of surface terminating groups. Subsequently, a comprehensive analysis is presented regarding the ramifications of reaction parameters, challenges, and synthesis procedures in the context of tailoring the morphology of various MXene materials while controlling the presence of specific functional groups. Last, the future prospects for 2D MXenes application as green materials in reaction engineering and energy conversion applications are discussed.

Suggested Citation

  • Miao, Baoji & Bashir, Tariq & Zhang, Hanlu & Ali, Tariq & Raza, Saleem & He, Delong & Liu, Yu & Bai, Jinbo, 2024. "Impact of various 2D MXene surface terminating groups in energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:rensus:v:199:y:2024:i:c:s1364032124002296
    DOI: 10.1016/j.rser.2024.114506
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124002296
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114506?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiahan Sang & Yu Xie & Dundar E. Yilmaz & Roghayyeh Lotfi & Mohamed Alhabeb & Alireza Ostadhossein & Babak Anasori & Weiwei Sun & Xufan Li & Kai Xiao & Paul R. C. Kent & Adri C. T. van Duin & Yury Gog, 2018. "In situ atomistic insight into the growth mechanisms of single layer 2D transition metal carbides," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    2. Jingrun Ran & Guoping Gao & Fa-Tang Li & Tian-Yi Ma & Aijun Du & Shi-Zhang Qiao, 2017. "Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production," Nature Communications, Nature, vol. 8(1), pages 1-10, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pandey, Mayank & Deshmukh, Kalim & Raman, Akhila & Asok, Aparna & Appukuttan, Saritha & Suman, G.R., 2024. "Prospects of MXene and graphene for energy storage and conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Chen, Yu & Gao, Xiang & Liu, Xinwei & Ji, Guipeng & Fu, Li & Yang, Yingze & Yu, Qiqi & Zhang, Wenjing & Xue, Xiaomeng, 2020. "Water collection from air by ionic liquids for efficient visible-light-driven hydrogen evolution by metal-free conjugated polymer photocatalysts," Renewable Energy, Elsevier, vol. 147(P1), pages 594-601.
    3. Wenjun Cui & Weixiao Lin & Weichao Lu & Chengshan Liu & Zhixiao Gao & Hao Ma & Wen Zhao & Gustaaf Tendeloo & Wenyu Zhao & Qingjie Zhang & Xiahan Sang, 2023. "Direct observation of cation diffusion driven surface reconstruction at van der Waals gaps," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Dasireddy, Venkata D.B.C. & Likozar, Blaž, 2022. "Photocatalytic CO2 reduction to methanol over bismuth promoted BaTiO3 perovskite nanoparticle catalysts," Renewable Energy, Elsevier, vol. 195(C), pages 885-895.
    5. Liu, Shengjun & Chi, Dianjun & Chen, Rong & Ma, Yan & Fang, Huixue & Zhang, Kui & Liu, Bo, 2023. "N-doped C layer boost Z-scheme interfacial charge transfer in TiO2/ZnIn2S4 heterojunctions for enhance photocatalytic hydrogen evolution," Renewable Energy, Elsevier, vol. 219(P2).
    6. Chong, Cheng Tung & Fan, Yee Van & Lee, Chew Tin & Klemeš, Jiří Jaromír, 2022. "Post COVID-19 ENERGY sustainability and carbon emissions neutrality," Energy, Elsevier, vol. 241(C).
    7. Bai, Ping & Lang, Junyu & Wang, Yinshu & Tong, Haojie & Wang, Zelin & Zhang, Bingbing & Su, Yiguo & Chai, Zhanli, 2024. "Z-scheme ZnCdS/NiCo-LDH photocatalyst followed dual-channel charge transfer via Au-intercalation for renewable hydrogen production," Renewable Energy, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:199:y:2024:i:c:s1364032124002296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.