IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v195y2022icp885-895.html
   My bibliography  Save this article

Photocatalytic CO2 reduction to methanol over bismuth promoted BaTiO3 perovskite nanoparticle catalysts

Author

Listed:
  • Dasireddy, Venkata D.B.C.
  • Likozar, Blaž

Abstract

The photocatalytic reduction reactions of CO2 to methanol over bismuth-promoted BaTiO3 chemical photo-catalyst were reported for the first measurement time. Catalysts were prepared via single step deposition precipitation/solution combustion technique. Phases/morphology were characterised by powder X-ray diffraction (XRD)/scanning electron microscopy (SEM). Light absorption spectrum/bandgap energy (Eg) was calculated using ultraviolet–visible (UV–Vis) wavelength diffuse reflectance spectroscopy. The addition of Ba/Bi increased Eg. Comparing materials, synthesised by combusting, the latter showed a surface high basicity/water adsorption. Tests indicated the formation of alcohols. Bi-containing also demonstrated CO. No CH3OH was found for precipitated though. Activity resulted from the synergetic relationship effect between Bi/Ti, caused by the charge transfer mechanism between these component species, strong interaction phenomena and recombination. All were stable for a long temporal period. In the presence of the Ba or Bi metals over titania, the electrons (e–) from TiO2 form an e––hole pair separation, prolonging their decay lifetime. Ba/Bi-based TiO2 presented produced a CH3OH yield of 5.95 μmol gcat−1 h−1, higher compared to structured catalytic systems, described in specific literature reports. As opposed to hydrogen, CH3OH is a renewable storable liquid solar fuel, not only integrating carbon capture and utilisation (CCU), but also power-to-liquid.

Suggested Citation

  • Dasireddy, Venkata D.B.C. & Likozar, Blaž, 2022. "Photocatalytic CO2 reduction to methanol over bismuth promoted BaTiO3 perovskite nanoparticle catalysts," Renewable Energy, Elsevier, vol. 195(C), pages 885-895.
  • Handle: RePEc:eee:renene:v:195:y:2022:i:c:p:885-895
    DOI: 10.1016/j.renene.2022.06.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122008965
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.06.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dasireddy, Venkata D.B.C. & Likozar, Blaž, 2019. "The role of copper oxidation state in Cu/ZnO/Al2O3 catalysts in CO2 hydrogenation and methanol productivity," Renewable Energy, Elsevier, vol. 140(C), pages 452-460.
    2. Dasireddy, Venkata D.B.C. & Likozar, Blaž, 2022. "Cu–Mn–O nano-particle/nano-sheet spinel-type materials as catalysts in methanol steam reforming (MSR) and preferential oxidation (PROX) reaction for purified hydrogen production," Renewable Energy, Elsevier, vol. 182(C), pages 713-724.
    3. Jiang, Yuan & Bhattacharyya, Debangsu, 2017. "Techno-economic analysis of direct coal-biomass to liquids (CBTL) plants with shale gas utilization and CO2 capture and storage (CCS)," Applied Energy, Elsevier, vol. 189(C), pages 433-448.
    4. Jingrun Ran & Guoping Gao & Fa-Tang Li & Tian-Yi Ma & Aijun Du & Shi-Zhang Qiao, 2017. "Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production," Nature Communications, Nature, vol. 8(1), pages 1-10, April.
    5. Rahman, Farahiyah Abdul & Aziz, Md Maniruzzaman A. & Saidur, R. & Bakar, Wan Azelee Wan Abu & Hainin, M.R & Putrajaya, Ramadhansyah & Hassan, Norhidayah Abdul, 2017. "Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 112-126.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pérez-Hernández, Raúl & Martínez, Albina Gutiérrez & Galicia, Gilberto Mondragón & Fernández García, María E. & Nuñez, Oscar Carrera & Hernández, Miriam Vega & López, Pavel & Gutiérrez Wing, Claudia E, 2023. "Carbon cycle using the CO2 conversion to methane as environmental feasibility on Ni/TiO2-Na nanotubes catalysts," Renewable Energy, Elsevier, vol. 217(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yadong & Yu, Haoran & Hu, Qing & Huang, Yanpeng & Wang, Ximing & Wang, Yuanhao & Wang, Fenghuan, 2023. "Application of microimpinging stream reactor coupled with ultrasound in Cu/CeZrOx solid solution catalyst preparation for CO2 hydrogenation to methanol," Renewable Energy, Elsevier, vol. 202(C), pages 834-843.
    2. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    3. Waseem Yousaf & Muhammad Sajjad Hussain & Anam Aziz, 2021. "The Role of Green Energy on Reducing the Carbon Emission in ASEAN Countries," iRASD Journal of Energy and Environment, International Research Association for Sustainable Development (iRASD), vol. 2(1), pages 34-39, June.
    4. Pandey, Mayank & Deshmukh, Kalim & Raman, Akhila & Asok, Aparna & Appukuttan, Saritha & Suman, G.R., 2024. "Prospects of MXene and graphene for energy storage and conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    5. Ghorbani, Bahram & Mehrpooya, Mehdi & Ghasemzadeh, Hossein, 2018. "Investigation of a hybrid water desalination, oxy-fuel power generation and CO2 liquefaction process," Energy, Elsevier, vol. 158(C), pages 1105-1119.
    6. Feng Dong & Yuling Pan, 2020. "Evolution of Renewable Energy in BRI Countries: A Combined Econometric and Decomposition Approach," IJERPH, MDPI, vol. 17(22), pages 1-18, November.
    7. Qureshi, Muhammad Imran & Qayyum, Shazia & Nassani, Abdelmohsen A. & Aldakhil, Abdullah Mohammed & Qazi Abro, Muhammad Moinuddin & Zaman, Khalid, 2019. "Management of various socio-economic factors under the United Nations sustainable development agenda," Resources Policy, Elsevier, vol. 64(C).
    8. Shen, Peiliang & Jiang, Yi & Zhang, Yangyang & Liu, Songhui & Xuan, Dongxing & Lu, Jianxin & Zhang, Shipeng & Poon, Chi Sun, 2023. "Production of aragonite whiskers by carbonation of fine recycled concrete wastes: An alternative pathway for efficient CO2 sequestration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    9. Carvalho, Lara & Lundgren, Joakim & Wetterlund, Elisabeth & Wolf, Jens & Furusjö, Erik, 2018. "Methanol production via black liquor co-gasification with expanded raw material base – Techno-economic assessment," Applied Energy, Elsevier, vol. 225(C), pages 570-584.
    10. Huang, Yi & Yi, Qun & Wei, Guo-qiang & Kang, Jing-xian & Li, Wen-ying & Feng, Jie & Xie, Ke-chang, 2018. "Energy use, greenhouse gases emission and cost effectiveness of an integrated high– and low–temperature Fisher–Tropsch synthesis plant from a lifecycle viewpoint," Applied Energy, Elsevier, vol. 228(C), pages 1009-1019.
    11. Cheng Cao & Hejuan Liu & Zhengmeng Hou & Faisal Mehmood & Jianxing Liao & Wentao Feng, 2020. "A Review of CO 2 Storage in View of Safety and Cost-Effectiveness," Energies, MDPI, vol. 13(3), pages 1-45, January.
    12. Mevawala, Chirag & Jiang, Yuan & Bhattacharyya, Debangsu, 2019. "Techno-economic optimization of shale gas to dimethyl ether production processes via direct and indirect synthesis routes," Applied Energy, Elsevier, vol. 238(C), pages 119-134.
    13. Chen, Yu & Gao, Xiang & Liu, Xinwei & Ji, Guipeng & Fu, Li & Yang, Yingze & Yu, Qiqi & Zhang, Wenjing & Xue, Xiaomeng, 2020. "Water collection from air by ionic liquids for efficient visible-light-driven hydrogen evolution by metal-free conjugated polymer photocatalysts," Renewable Energy, Elsevier, vol. 147(P1), pages 594-601.
    14. Wu, Handong & Gao, Lin & Jin, Hongguang & Li, Sheng, 2017. "Low-energy-penalty principles of CO2 capture in polygeneration systems," Applied Energy, Elsevier, vol. 203(C), pages 571-581.
    15. Leonel J.R. Nunes & Catarina I.R. Meireles & Carlos J. Pinto Gomes & Nuno M.C. Almeida Ribeiro, 2019. "Forest Management and Climate Change Mitigation: A Review on Carbon Cycle Flow Models for the Sustainability of Resources," Sustainability, MDPI, vol. 11(19), pages 1-10, September.
    16. Eom, Seongyong & Na, Sangkyung & Ahn, Seongyool & Choi, Gyungmin, 2022. "Electrochemical conversion of CO2 using different electrode materials in an Li–K molten salt system," Energy, Elsevier, vol. 245(C).
    17. Vladimir Kindra & Andrey Rogalev & Evgeny Lisin & Sergey Osipov & Olga Zlyvko, 2021. "Techno-Economic Analysis of the Oxy-Fuel Combustion Power Cycles with Near-Zero Emissions," Energies, MDPI, vol. 14(17), pages 1-22, August.
    18. Raza, Waseem & Raza, Nadeem & Agbe, Henry & Kumar, R.V. & Kim, Ki-Hyun & Yang, Jianhua, 2018. "Multistep sequestration and storage of CO2 to form valuable products using forsterite," Energy, Elsevier, vol. 155(C), pages 865-873.
    19. Dasireddy, Venkata D.B.C. & Vengust, Damjan & Likozar, Blaž & Kovač, Janez & Mrzel, Aleš, 2021. "Production of syngas by CO2 reduction through Reverse Water–Gas Shift (RWGS) over catalytically-active molybdenum-based carbide, nitride and composite nanowires," Renewable Energy, Elsevier, vol. 176(C), pages 251-261.
    20. Han, Jian & Yu, Jun & Xue, Zhaoteng & Wu, Guisheng & Mao, Dongsen, 2024. "Highly efficient CO2 hydrogenation to methanol over Cu–Ce1-xZrxO2 catalysts prepared by an eco-friendly and facile solid-phase grinding method," Renewable Energy, Elsevier, vol. 222(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:195:y:2022:i:c:p:885-895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.