IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v219y2023ip2s096014812301409x.html
   My bibliography  Save this article

N-doped C layer boost Z-scheme interfacial charge transfer in TiO2/ZnIn2S4 heterojunctions for enhance photocatalytic hydrogen evolution

Author

Listed:
  • Liu, Shengjun
  • Chi, Dianjun
  • Chen, Rong
  • Ma, Yan
  • Fang, Huixue
  • Zhang, Kui
  • Liu, Bo

Abstract

Inspired by natural photosynthesis, the design of novel Z-scheme photocatalytic systems holds great promise for improving photocatalytic hydrogen production performance. Here, we constructed a Z-scheme heterojunction to effectively improve the charge separation of TiO2/ZnIn2S4, with the N-doped C layer acting as an electron bridge. The T@NC-A/ZIS-72 heterojunctions demonstrated hydrogen production activity approximately 12.1 and 97.9 times higher than those of ZnIn2S4 and TiO2@NC-A, respectively. The excellent electron migration ability of the carbon layer accelerated the photocatalytic hydrogen production performance. Our design introduces a component to provide a dedicated charge transport pathway, overcoming the inherent properties of the material and providing a new perspective for enhancing photocatalytic performance.

Suggested Citation

  • Liu, Shengjun & Chi, Dianjun & Chen, Rong & Ma, Yan & Fang, Huixue & Zhang, Kui & Liu, Bo, 2023. "N-doped C layer boost Z-scheme interfacial charge transfer in TiO2/ZnIn2S4 heterojunctions for enhance photocatalytic hydrogen evolution," Renewable Energy, Elsevier, vol. 219(P2).
  • Handle: RePEc:eee:renene:v:219:y:2023:i:p2:s096014812301409x
    DOI: 10.1016/j.renene.2023.119494
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812301409X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119494?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jingrun Ran & Guoping Gao & Fa-Tang Li & Tian-Yi Ma & Aijun Du & Shi-Zhang Qiao, 2017. "Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production," Nature Communications, Nature, vol. 8(1), pages 1-10, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pandey, Mayank & Deshmukh, Kalim & Raman, Akhila & Asok, Aparna & Appukuttan, Saritha & Suman, G.R., 2024. "Prospects of MXene and graphene for energy storage and conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Chong, Cheng Tung & Fan, Yee Van & Lee, Chew Tin & Klemeš, Jiří Jaromír, 2022. "Post COVID-19 ENERGY sustainability and carbon emissions neutrality," Energy, Elsevier, vol. 241(C).
    3. Chen, Yu & Gao, Xiang & Liu, Xinwei & Ji, Guipeng & Fu, Li & Yang, Yingze & Yu, Qiqi & Zhang, Wenjing & Xue, Xiaomeng, 2020. "Water collection from air by ionic liquids for efficient visible-light-driven hydrogen evolution by metal-free conjugated polymer photocatalysts," Renewable Energy, Elsevier, vol. 147(P1), pages 594-601.
    4. Bai, Ping & Lang, Junyu & Wang, Yinshu & Tong, Haojie & Wang, Zelin & Zhang, Bingbing & Su, Yiguo & Chai, Zhanli, 2024. "Z-scheme ZnCdS/NiCo-LDH photocatalyst followed dual-channel charge transfer via Au-intercalation for renewable hydrogen production," Renewable Energy, Elsevier, vol. 226(C).
    5. Dasireddy, Venkata D.B.C. & Likozar, Blaž, 2022. "Photocatalytic CO2 reduction to methanol over bismuth promoted BaTiO3 perovskite nanoparticle catalysts," Renewable Energy, Elsevier, vol. 195(C), pages 885-895.
    6. Miao, Baoji & Bashir, Tariq & Zhang, Hanlu & Ali, Tariq & Raza, Saleem & He, Delong & Liu, Yu & Bai, Jinbo, 2024. "Impact of various 2D MXene surface terminating groups in energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:219:y:2023:i:p2:s096014812301409x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.