IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v192y2024ics1364032123010250.html
   My bibliography  Save this article

Recent progress of layered structured P2- and O3- type transition metal oxides as cathode material for sodium-ion batteries

Author

Listed:
  • Gupta, Yamini
  • Siwatch, Poonam
  • Karwasra, Reetika
  • Sharma, Kriti
  • Tripathi, S.K.

Abstract

The demand for grid-scale energy storage devices is increasing extensively nowadays. However, existing energy storage devices, consisting of Nickel-cadmium batteries, Lithium-ion batteries, and Nickel-metal hydride batteries, cannot meet future demands due to irregular dispersal and the high price of the reserves. In this regard, sodium-ion batteries (SIBs) that utilize Na-ions in their charge storage mechanism have gained significant consideration due to price advantage and extensive dispersal of sodium reserves in the earth’s crust. Due to its significant effect on the electrochemical performance, the cathode materials are considered a key component for SIBs. Up to now, Polyanionic compounds, Prussian blue analogues, Organic materials, and Layered transition metal oxides (LTMOs) have been investigated as cathode materials for SIBs. LTMOs are considered potential cathode materials for SIBs due to their feasible synthesis, excellent specific capacity, and environmental friendliness. Layered P2- and O3- types are found to be promising candidates for their use as cathode material in SIBs commercialization. This review features the current development in LTMOs (mainly P2- and O3- types) as cathode candidates for SIBs, their synthesis techniques, the present challenges faced by this technology, modification approaches to enhance the electrochemical performance, and future aspects of developing fully functional SIBs.

Suggested Citation

  • Gupta, Yamini & Siwatch, Poonam & Karwasra, Reetika & Sharma, Kriti & Tripathi, S.K., 2024. "Recent progress of layered structured P2- and O3- type transition metal oxides as cathode material for sodium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:rensus:v:192:y:2024:i:c:s1364032123010250
    DOI: 10.1016/j.rser.2023.114167
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123010250
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.114167?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perveen, Tahira & Siddiq, Muhammad & Shahzad, Nadia & Ihsan, Rida & Ahmad, Abrar & Shahzad, Muhammad Imran, 2020. "Prospects in anode materials for sodium ion batteries - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Yu-Jie Guo & Peng-Fei Wang & Yu-Bin Niu & Xu-Dong Zhang & Qinghao Li & Xiqian Yu & Min Fan & Wan-Ping Chen & Yang Yu & Xiangfeng Liu & Qinghai Meng & Sen Xin & Ya-Xia Yin & Yu-Guo Guo, 2021. "Boron-doped sodium layered oxide for reversible oxygen redox reaction in Na-ion battery cathodes," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Qinhao Shi & Ruijuan Qi & Xiaochen Feng & Jing Wang & Yong Li & Zhenpeng Yao & Xuan Wang & Qianqian Li & Xionggang Lu & Jiujun Zhang & Yufeng Zhao, 2022. "Niobium-doped layered cathode material for high-power and low-temperature sodium-ion batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Chenchen Wang & Luojia Liu & Shuo Zhao & Yanchen Liu & Yubo Yang & Haijun Yu & Suwon Lee & Gi-Hyeok Lee & Yong-Mook Kang & Rong Liu & Fujun Li & Jun Chen, 2021. "Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun-Hyuk Song & Seungju Yu & Byunghoon Kim & Donggun Eum & Jiung Cho & Ho-Young Jang & Sung-O Park & Jaekyun Yoo & Youngmin Ko & Kyeongsu Lee & Myeong Hwan Lee & Byungwook Kang & Kisuk Kang, 2023. "Slab gliding, a hidden factor that induces irreversibility and redox asymmetry of lithium-rich layered oxide cathodes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Mengyao Tang & Shuai Dong & Jiawei Wang & Liwei Cheng & Qiaonan Zhu & Yanmei Li & Xiuyi Yang & Lin Guo & Hua Wang, 2023. "Low-temperature anode-free potassium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Du, Peng & Cao, Liang & Zhang, Bao & Wang, Chunhui & Xiao, Zhiming & Zhang, Jiafeng & Wang, Dong & Ou, Xing, 2021. "Recent progress on heterostructure materials for next-generation sodium/potassium ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Shahzad, Nadia & Lutfullah, & Perveen, Tahira & Pugliese, Diego & Haq, Sirajul & Fatima, Nusrat & Salman, Syed Muhammad & Tagliaferro, Alberto & Shahzad, Muhammad Imran, 2022. "Counter electrode materials based on carbon nanotubes for dye-sensitized solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    5. Yixin Hao & Sung-Fu Hung & Luqi Wang & Liming Deng & Wen-Jing Zeng & Chenchen Zhang & Zih-Yi Lin & Chun-Han Kuo & Ye Wang & Ying Zhang & Han-Yi Chen & Feng Hu & Linlin Li & Shengjie Peng, 2024. "Designing neighboring-site activation of single atom via tunnel ions for boosting acidic oxygen evolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Maria Leonor Carvalho & Maria Anna Cusenza & Giulio Mela & Andrea Temporelli & Irene Quinzeni & Pierpaolo Girardi, 2023. "LCA and C-LCC Indicator as Tools for Sodium-Ion Batteries’ Eco-Design," Energies, MDPI, vol. 16(17), pages 1-20, August.
    7. Behrooz Mosallanejad & Mehran Javanbakht & Zahra Shariatinia & Mohammad Akrami, 2022. "Phenyl Vinylsulfonate, a Novel Electrolyte Additive to Improve Electrochemical Performance of Lithium-Ion Batteries," Energies, MDPI, vol. 15(17), pages 1-12, August.
    8. Qinhao Shi & Ruijuan Qi & Xiaochen Feng & Jing Wang & Yong Li & Zhenpeng Yao & Xuan Wang & Qianqian Li & Xionggang Lu & Jiujun Zhang & Yufeng Zhao, 2022. "Niobium-doped layered cathode material for high-power and low-temperature sodium-ion batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:192:y:2024:i:c:s1364032123010250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.