Recent progress of layered structured P2- and O3- type transition metal oxides as cathode material for sodium-ion batteries
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2023.114167
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Perveen, Tahira & Siddiq, Muhammad & Shahzad, Nadia & Ihsan, Rida & Ahmad, Abrar & Shahzad, Muhammad Imran, 2020. "Prospects in anode materials for sodium ion batteries - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Qinhao Shi & Ruijuan Qi & Xiaochen Feng & Jing Wang & Yong Li & Zhenpeng Yao & Xuan Wang & Qianqian Li & Xionggang Lu & Jiujun Zhang & Yufeng Zhao, 2022. "Niobium-doped layered cathode material for high-power and low-temperature sodium-ion batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Yu-Jie Guo & Peng-Fei Wang & Yu-Bin Niu & Xu-Dong Zhang & Qinghao Li & Xiqian Yu & Min Fan & Wan-Ping Chen & Yang Yu & Xiangfeng Liu & Qinghai Meng & Sen Xin & Ya-Xia Yin & Yu-Guo Guo, 2021. "Boron-doped sodium layered oxide for reversible oxygen redox reaction in Na-ion battery cathodes," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
- Chenchen Wang & Luojia Liu & Shuo Zhao & Yanchen Liu & Yubo Yang & Haijun Yu & Suwon Lee & Gi-Hyeok Lee & Yong-Mook Kang & Rong Liu & Fujun Li & Jun Chen, 2021. "Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yin, Xinxin & Wu, Donghai & Lu, Zhenjiang & Xie, Jing & Hu, Jindou & Tang, Mingxuan & Ma, Huan & Zhang, Xuntao & Cao, Yali, 2024. "Innovative synthesis and comprehensive electrochemical evaluation of FeVO4 for enhanced sodium-ion battery performance," Applied Energy, Elsevier, vol. 373(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jun-Hyuk Song & Seungju Yu & Byunghoon Kim & Donggun Eum & Jiung Cho & Ho-Young Jang & Sung-O Park & Jaekyun Yoo & Youngmin Ko & Kyeongsu Lee & Myeong Hwan Lee & Byungwook Kang & Kisuk Kang, 2023. "Slab gliding, a hidden factor that induces irreversibility and redox asymmetry of lithium-rich layered oxide cathodes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Mengyao Tang & Shuai Dong & Jiawei Wang & Liwei Cheng & Qiaonan Zhu & Yanmei Li & Xiuyi Yang & Lin Guo & Hua Wang, 2023. "Low-temperature anode-free potassium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Du, Peng & Cao, Liang & Zhang, Bao & Wang, Chunhui & Xiao, Zhiming & Zhang, Jiafeng & Wang, Dong & Ou, Xing, 2021. "Recent progress on heterostructure materials for next-generation sodium/potassium ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
- Shahzad, Nadia & Lutfullah, & Perveen, Tahira & Pugliese, Diego & Haq, Sirajul & Fatima, Nusrat & Salman, Syed Muhammad & Tagliaferro, Alberto & Shahzad, Muhammad Imran, 2022. "Counter electrode materials based on carbon nanotubes for dye-sensitized solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Yixin Hao & Sung-Fu Hung & Luqi Wang & Liming Deng & Wen-Jing Zeng & Chenchen Zhang & Zih-Yi Lin & Chun-Han Kuo & Ye Wang & Ying Zhang & Han-Yi Chen & Feng Hu & Linlin Li & Shengjie Peng, 2024. "Designing neighboring-site activation of single atom via tunnel ions for boosting acidic oxygen evolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Maria Leonor Carvalho & Maria Anna Cusenza & Giulio Mela & Andrea Temporelli & Irene Quinzeni & Pierpaolo Girardi, 2023. "LCA and C-LCC Indicator as Tools for Sodium-Ion Batteries’ Eco-Design," Energies, MDPI, vol. 16(17), pages 1-20, August.
- Behrooz Mosallanejad & Mehran Javanbakht & Zahra Shariatinia & Mohammad Akrami, 2022. "Phenyl Vinylsulfonate, a Novel Electrolyte Additive to Improve Electrochemical Performance of Lithium-Ion Batteries," Energies, MDPI, vol. 15(17), pages 1-12, August.
- Qinhao Shi & Ruijuan Qi & Xiaochen Feng & Jing Wang & Yong Li & Zhenpeng Yao & Xuan Wang & Qianqian Li & Xionggang Lu & Jiujun Zhang & Yufeng Zhao, 2022. "Niobium-doped layered cathode material for high-power and low-temperature sodium-ion batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
More about this item
Keywords
Sodium-ion batteries; Cathode family; Synthesis methods; P-type layered oxides; O-type layered oxides;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:192:y:2024:i:c:s1364032123010250. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.