IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v159y2022ics1364032122001198.html
   My bibliography  Save this article

Counter electrode materials based on carbon nanotubes for dye-sensitized solar cells

Author

Listed:
  • Shahzad, Nadia
  • Lutfullah,
  • Perveen, Tahira
  • Pugliese, Diego
  • Haq, Sirajul
  • Fatima, Nusrat
  • Salman, Syed Muhammad
  • Tagliaferro, Alberto
  • Shahzad, Muhammad Imran

Abstract

Efficiency, stability, and cost-effectiveness are the prime challenges in research of materials for solar cells. Technologically as well as scientifically, attention gained by dye-sensitized solar cells (DSSCs) stems from their low material and fabrication costs as well as high efficiency projections. The aim of this study is to explore the carbon nanotubes (CNTs) based counter electrode (CE) materials for DSSCs and to reconnoiter the suitable alternative materials in place of noble metals such as Platinum (Pt), and Gold (Au).. Various classes of CE materials based on CNTs including pure single walled, double walled, and multiwalled CNTs, doped CNTs and their hybrid composites with various polymers, and transition metal compounds are discussed comprehensively in light of the research work started since the inspection of DSSCs and CNTs.The properties associated with such materials, including surface morphology, structural determination, thermal stability, and electrochemical activity, are also thoroughly analyzed and compared. This work provides a thorough insight into the possibility of exploiting CNTs as alternative CE materials. In addition to the above, this study also includes the working and brief overview of materials for other components of DSSCs such as photoanode, electrolyte, and sensitizer..

Suggested Citation

  • Shahzad, Nadia & Lutfullah, & Perveen, Tahira & Pugliese, Diego & Haq, Sirajul & Fatima, Nusrat & Salman, Syed Muhammad & Tagliaferro, Alberto & Shahzad, Muhammad Imran, 2022. "Counter electrode materials based on carbon nanotubes for dye-sensitized solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
  • Handle: RePEc:eee:rensus:v:159:y:2022:i:c:s1364032122001198
    DOI: 10.1016/j.rser.2022.112196
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122001198
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112196?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sulaeman, Uyi & Zuhairi Abdullah, Ahmad, 2017. "The way forward for the modification of dye-sensitized solar cell towards better power conversion efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 438-452.
    2. Perveen, Tahira & Siddiq, Muhammad & Shahzad, Nadia & Ihsan, Rida & Ahmad, Abrar & Shahzad, Muhammad Imran, 2020. "Prospects in anode materials for sodium ion batteries - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Guai, Guan Hong & Song, Qun Liang & Lu, Zhi Song & Ng, Chee Mang & Li, Chang Ming, 2013. "Tailor and functionalize TiO2 compact layer by acid treatment for high performance dye-sensitized solar cell and its enhancement mechanism," Renewable Energy, Elsevier, vol. 51(C), pages 29-35.
    4. Gong, Jiawei & Liang, Jing & Sumathy, K., 2012. "Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5848-5860.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Jiawei & Sumathy, K. & Qiao, Qiquan & Zhou, Zhengping, 2017. "Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 234-246.
    2. Bandara, T.M.W.J. & DeSilva, L. Ajith & Ratnasekera, J.L. & Hettiarachchi, K.H. & Wijerathna, A.P. & Thakurdesai, Madhavi & Preston, Joshua & Albinsson, I. & Mellander, B.-E., 2019. "High efficiency dye-sensitized solar cell based on a novel gel polymer electrolyte containing RbI and tetrahexylammonium iodide (Hex4NI) salts and multi-layered photoelectrodes of TiO2 nanoparticles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 282-290.
    3. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    4. Zhao, Xuebing & Liu, Wei & Deng, Yulin & Zhu, J.Y., 2017. "Low-temperature microbial and direct conversion of lignocellulosic biomass to electricity: Advances and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 268-282.
    5. Fabian Schoden & Marius Dotter & Dörthe Knefelkamp & Tomasz Blachowicz & Eva Schwenzfeier Hellkamp, 2021. "Review of State of the Art Recycling Methods in the Context of Dye Sensitized Solar Cells," Energies, MDPI, vol. 14(13), pages 1-12, June.
    6. Du, Peng & Cao, Liang & Zhang, Bao & Wang, Chunhui & Xiao, Zhiming & Zhang, Jiafeng & Wang, Dong & Ou, Xing, 2021. "Recent progress on heterostructure materials for next-generation sodium/potassium ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    7. Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2016. "A pilot facility for analysis and simulation of smart microgrids feeding smart buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1247-1255.
    8. Wali, Qamar & Elumalai, Naveen Kumar & Iqbal, Yaseen & Uddin, Ashraf & Jose, Rajan, 2018. "Tandem perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 89-110.
    9. Leena Grandell & Mikael Höök, 2015. "Assessing Rare Metal Availability Challenges for Solar Energy Technologies," Sustainability, MDPI, vol. 7(9), pages 1-20, August.
    10. Devadiga, Dheeraj & Selvakumar, Muthu & Shetty, Prakasha & Santosh, Mysore Sridhar, 2022. "The integration of flexible dye-sensitized solar cells and storage devices towards wearable self-charging power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    11. Alizadeh, Amin & Roudgar-Amoli, Mostafa & Bonyad-Shekalgourabi, Seyed-Milad & Shariatinia, Zahra & Mahmoudi, Melika & Saadat, Fatemeh, 2022. "Dye sensitized solar cells go beyond using perovskite and spinel inorganic materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    12. Husain, Alaa A.F. & Hasan, Wan Zuha W. & Shafie, Suhaidi & Hamidon, Mohd N. & Pandey, Shyam Sudhir, 2018. "A review of transparent solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 779-791.
    13. Hernández-Moro, J. & Martínez-Duart, J.M., 2013. "Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 119-132.
    14. Li, Bowei & Jayawardena, K.D. G. Imalka & Zhang, Jing & Bandara, Rajapakshe Mudiyanselage Indrachapa & Liu, Xueping & Bi, Jingxin & Silva, Shashini M. & Liu, Dongtao & Underwood, Cameron C.L. & Xiang,, 2024. "Stability of formamidinium tin triiodide-based inverted perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    15. Jafarzadeh, Mohammad & Sipaut, Coswald Stephen & Dayou, Jedol & Mansa, Rachel Fran, 2016. "Recent progresses in solar cells: Insight into hollow micro/nano–structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 543-568.
    16. Sharma, Sunita & Bulkesh Siwach, & Ghoshal, S.K. & Mohan, Devendra, 2017. "Dye sensitized solar cells: From genesis to recent drifts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 529-537.
    17. Shalini, S. & Balasundara prabhu, R. & Prasanna, S. & Mallick, Tapas K. & Senthilarasu, S., 2015. "Review on natural dye sensitized solar cells: Operation, materials and methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1306-1325.
    18. P. K. Olulope* & A. O. Adeleye & A. B. Amomoh, 2018. "Design and Simulation of Dye Sensitized Solar Cell as a Cost-Effective Alternative to Silicon Solar Panel," Scientific Review, Academic Research Publishing Group, vol. 4(5), pages 44-52, 05-2018.
    19. Maria Leonor Carvalho & Maria Anna Cusenza & Giulio Mela & Andrea Temporelli & Irene Quinzeni & Pierpaolo Girardi, 2023. "LCA and C-LCC Indicator as Tools for Sodium-Ion Batteries’ Eco-Design," Energies, MDPI, vol. 16(17), pages 1-20, August.
    20. Sulaeman, Uyi & Zuhairi Abdullah, Ahmad, 2017. "The way forward for the modification of dye-sensitized solar cell towards better power conversion efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 438-452.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:159:y:2022:i:c:s1364032122001198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.