IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v191y2024ics136403212300998x.html
   My bibliography  Save this article

Co-abatement of carbon and air pollutants emissions in China’s iron and steel industry under carbon neutrality scenarios

Author

Listed:
  • Liu, Dachuan
  • Wang, Pu
  • Sun, Yan
  • Zhang, Huawei
  • Xu, Shanqing

Abstract

Co-abatement strategies that can reduce both CO2 and air pollutants emissions are essential for the green and low-carbon transition of China’s iron and steel industry. Most previous studies analyzed CO2 and air pollutants reduction policies independently, but the synergies and tradeoffs between the two types of policies have rarely been investigated. By establishing a bottom-up simulation model that considers combinations of different policy objectives, crude steel demand and technology development options, this study couples air pollutants reduction into the carbon neutrality pathways to evaluate the synergistic effects of different abatement strategies in China’s iron and steel industry. The study also incorporates the indirect CO2 and air pollutants emissions from the upstream energy production sectors into pathway analysis, in order to avoid cross-sectoral carbon and air pollution leakages. The results show that the current emissions reduction policies in the iron and steel industry are far from achieving the carbon neutrality goals. To achieve synergistic reduction in CO2 and air pollutants emissions, the short term policies should mainly rely on increasing the share of the scrap-electric arc furnace (EAF), while reducing crude steel demand and promoting breakthrough technologies, particularly hydrogen-based direct reduction, should play a major role in the long term. Meanwhile, China should promote the decarbonization of power generation and hydrogen production to reduce indirect CO2 and air pollutants emissions from the upstream sectors.

Suggested Citation

  • Liu, Dachuan & Wang, Pu & Sun, Yan & Zhang, Huawei & Xu, Shanqing, 2024. "Co-abatement of carbon and air pollutants emissions in China’s iron and steel industry under carbon neutrality scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:rensus:v:191:y:2024:i:c:s136403212300998x
    DOI: 10.1016/j.rser.2023.114140
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212300998X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.114140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuancheng Lin & Honghua Yang & Linwei Ma & Zheng Li & Weidou Ni, 2021. "Low-Carbon Development for the Iron and Steel Industry in China and the World: Status Quo, Future Vision, and Key Actions," Sustainability, MDPI, vol. 13(22), pages 1-28, November.
    2. Pu Wang & Cheng-Kuan Lin & Yi Wang & Dachuan Liu & Dunjiang Song & Tong Wu, 2021. "Location-specific co-benefits of carbon emissions reduction from coal-fired power plants in China," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Peng Wang & Morten Ryberg & Yi Yang & Kuishuang Feng & Sami Kara & Michael Hauschild & Wei-Qiang Chen, 2021. "Efficiency stagnation in global steel production urges joint supply- and demand-side mitigation efforts," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Wang, Peng & Zhao, Shen & Dai, Tao & Peng, Kun & Zhang, Qi & Li, Jiashuo & Chen, Wei-Qiang, 2022. "Regional disparities in steel production and restrictions to progress on global decarbonization: A cross-national analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Lee, Hwarang & Lee, Jeongeun & Koo, Yoonmo, 2022. "Economic impacts of carbon capture and storage on the steel industry–A hybrid energy system model incorporating technological change," Applied Energy, Elsevier, vol. 317(C).
    6. Xin Bo & Min Jia & Xiaoda Xue & Ling Tang & Zhifu Mi & Shouyang Wang & Weigeng Cui & Xiangyu Chang & Jianhui Ruan & Guangxia Dong & Beihai Zhou & Steven J. Davis, 2021. "Effect of strengthened standards on Chinese ironmaking and steelmaking emissions," Nature Sustainability, Nature, vol. 4(9), pages 811-820, September.
    7. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2021. "A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    8. Erik Dietzenbacher & Ronald E. Miller, 2009. "Ras‐Ing The Transactions Or The Coefficients: It Makes No Difference," Journal of Regional Science, Wiley Blackwell, vol. 49(3), pages 555-566, August.
    9. Wang, P.P. & Li, Y.P. & Huang, G.H. & Wang, S.G., 2022. "A multivariate statistical input–output model for analyzing water-carbon nexus system from multiple perspectives - Jing-Jin-Ji region," Applied Energy, Elsevier, vol. 310(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Honghua & Ma, Linwei & Li, Zheng, 2023. "Tracing China's steel use from steel flows in the production system to steel footprints in the consumption system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    2. Yuancheng Lin & Honghua Yang & Linwei Ma & Zheng Li & Weidou Ni, 2021. "Low-Carbon Development for the Iron and Steel Industry in China and the World: Status Quo, Future Vision, and Key Actions," Sustainability, MDPI, vol. 13(22), pages 1-28, November.
    3. Lee, Hwarang, 2023. "Decarbonization strategies for steel production with uncertainty in hydrogen direct reduction," Energy, Elsevier, vol. 283(C).
    4. Wang, Peng & Zhao, Shen & Dai, Tao & Peng, Kun & Zhang, Qi & Li, Jiashuo & Chen, Wei-Qiang, 2022. "Regional disparities in steel production and restrictions to progress on global decarbonization: A cross-national analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Pim Vercoulen & Soocheol Lee & Xu Han & Wendan Zhang & Yongsung Cho & Jun Pang, 2023. "Carbon-Neutral Steel Production and Its Impact on the Economies of China, Japan, and Korea: A Simulation with E3ME-FTT:Steel," Energies, MDPI, vol. 16(11), pages 1-24, June.
    6. Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    7. Sun, Minmin & Zhang, Jianliang & Li, Kejiang & Barati, Mansoor & Liu, Zhibin, 2022. "Co-gasification characteristics of coke blended with hydro-char and pyro-char from bamboo," Energy, Elsevier, vol. 241(C).
    8. Wen Zhang & Yuting Yang & Huigang Liang, 2023. "A Bibliometric Analysis of Enterprise Social Media in Digital Economy: Research Hotspots and Trends," Sustainability, MDPI, vol. 15(16), pages 1-21, August.
    9. Xian, Yujiao & Hu, Zhihui & Wang, Ke, 2023. "The least-cost abatement measure of carbon emissions for China's glass manufacturing industry based on the marginal abatement costs," Energy, Elsevier, vol. 284(C).
    10. Kox, Henk L.M., 2022. "A micro-macro model of foreign direct investment: knowledge-based gravity forces, self-selection and third-country effects," MPRA Paper 115542, University Library of Munich, Germany.
    11. Jiang, Sheng-Long & Wang, Meihong & Bogle, I. David L., 2023. "Plant-wide byproduct gas distribution under uncertainty in iron and steel industry via quantile forecasting and robust optimization," Applied Energy, Elsevier, vol. 350(C).
    12. Taimoor Arif Kiani & Samina Sabir & Unbreen Qayyum & Sohail Anjum, 2023. "Estimating the effect of technological innovations on environmental degradation: empirical evidence from selected ASEAN and SAARC countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6529-6550, July.
    13. Lin Xu & Zhenwei Guo, 2022. "Effect of Regulation on the Increasing Price of Metals and Minerals to Meet the Challenges in Clean Energy Transitions: A Case Study of China," Sustainability, MDPI, vol. 14(2), pages 1-13, January.
    14. Kox, Henk L.M., 2022. "Explaining foreign direct investment patterns: a testable micro-macro gravity model for FDI," MPRA Paper 115273, University Library of Munich, Germany.
    15. McLaughlin, Hope & Littlefield, Anna A. & Menefee, Maia & Kinzer, Austin & Hull, Tobias & Sovacool, Benjamin K. & Bazilian, Morgan D. & Kim, Jinsoo & Griffiths, Steven, 2023. "Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    16. Shao, Tianming & Pan, Xunzhang & Li, Xiang & Zhou, Sheng & Zhang, Shu & Chen, Wenying, 2022. "China's industrial decarbonization in the context of carbon neutrality: A sub-sectoral analysis based on integrated modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    17. Gunnar Lindberg, 2011. "On the appropriate use of (input-output) coefficients to generate non-survey regional input-output tables: Implications for the determination of output multipliers," ERSA conference papers ersa10p800, European Regional Science Association.
    18. Wadim Strielkowski & Lubomír Civín & Elena Tarkhanova & Manuela Tvaronavičienė & Yelena Petrenko, 2021. "Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review," Energies, MDPI, vol. 14(24), pages 1-24, December.
    19. Wang, Xiaoling & Zhang, Tianyue & Nathwani, Jatin & Yang, Fangming & Shao, Qinglong, 2022. "Environmental regulation, technology innovation, and low carbon development: Revisiting the EKC Hypothesis, Porter Hypothesis, and Jevons’ Paradox in China's iron & steel industry," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    20. Anthony T Flegg & Yongming Huang & Timo Tohmo, 2013. "Cross-hauling and regional input-output tables: the case of the province of Hubei, China," Working Papers 20131310, Department of Accounting, Economics and Finance, Bristol Business School, University of the West of England, Bristol.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:191:y:2024:i:c:s136403212300998x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.