IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v189y2024ipas1364032123008304.html
   My bibliography  Save this article

A comprehensive review of high-transmittance low-conductivity material-assisted radiant cooling air conditioning: Materials, mechanisms, and application perspectives

Author

Listed:
  • Gu, Jiaan
  • Wu, Huijun
  • Liu, Jia
  • Ding, Yujie
  • Liu, Yanchen
  • Huang, Gongsheng
  • Xu, Xinhua

Abstract

Radiant cooling in buildings, as an energy-saving and comfort cooling method, is very promising in creating a green and healthy indoor thermal environment in buildings. However, radiant panels are prone to dew condensation and have low cooling capacity; thus, their application in hot and humid regions is limited. Covering the surface of the radiant cooling panel with a high transmittance low conductivity material (HTLCM), and, separating the air contact surface and the radiating surface, to form a new decoupled radiant cooling technology is an effective way to address the deficient radiant cooling capacity and easy condensation. Radiation heat exchange occurs between the radiant cooling surface and the indoor heat source surface through the HTLCM, while the indoor humid air undergoes convective heat exchange with the higher temperature HTLCM surface. The optical, and thermal properties of the material determine the cooling capacity and condensation resistance (thermal performance) of the radiant cooling air conditioning. This review provides a summary of the research advances in HTLCM-assisted radiant cooling air conditioning (RCAC) in recent years. First, the classification and optical and thermal properties of the currently used HTLCMs for radiant cooling are presented. Second, the heat transfer mechanism of RCAC with HTLCM is introduced. Finally, the research advances in the application of HTLCM-assisted radiant cooling are summarized, and the challenges and future development in this field are provided. The practical engineering application of HTLCM-assisted radiant cooling units in hot and humid regions is highlighted.

Suggested Citation

  • Gu, Jiaan & Wu, Huijun & Liu, Jia & Ding, Yujie & Liu, Yanchen & Huang, Gongsheng & Xu, Xinhua, 2024. "A comprehensive review of high-transmittance low-conductivity material-assisted radiant cooling air conditioning: Materials, mechanisms, and application perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
  • Handle: RePEc:eee:rensus:v:189:y:2024:i:pa:s1364032123008304
    DOI: 10.1016/j.rser.2023.113972
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123008304
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113972?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Ji & Yuan, Jianjuan & Liu, Junwei & Zhou, Zhihua & Sui, Jiyuan & Xing, Jincheng & Zuo, Jian, 2021. "Cover shields for sub-ambient radiative cooling: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Isaac, Morna & van Vuuren, Detlef P., 2009. "Modeling global residential sector energy demand for heating and air conditioning in the context of climate change," Energy Policy, Elsevier, vol. 37(2), pages 507-521, February.
    3. Aviv, Dorit & Chen, Kian Wee & Teitelbaum, Eric & Sheppard, Denon & Pantelic, Jovan & Rysanek, Adam & Meggers, Forrest, 2021. "A fresh (air) look at ventilation for COVID-19: Estimating the global energy savings potential of coupling natural ventilation with novel radiant cooling strategies," Applied Energy, Elsevier, vol. 292(C).
    4. Xing, Daoming & Li, Nianping & Cui, Haijiao & Zhou, Linxuan & Liu, Qingqing, 2020. "Theoretical study of infrared transparent cover preventing condensation on indoor radiant cooling surfaces," Energy, Elsevier, vol. 201(C).
    5. Zhao, Bin & Wang, Chuyao & Hu, Mingke & Ao, Xianze & Liu, Jie & Xuan, Qingdong & Pei, Gang, 2022. "Light and thermal management of the semi-transparent radiative cooling glass for buildings," Energy, Elsevier, vol. 238(PA).
    6. Aaswath P. Raman & Marc Abou Anoma & Linxiao Zhu & Eden Rephaeli & Shanhui Fan, 2014. "Passive radiative cooling below ambient air temperature under direct sunlight," Nature, Nature, vol. 515(7528), pages 540-544, November.
    7. Bartoli, B. & Catalanotti, S. & Coluzzi, B. & Cuomo, V. & Silvestrini, V. & Troise, G., 1977. "Nocturnal and diurnal performances of selective radiators," Applied Energy, Elsevier, vol. 3(4), pages 267-286, October.
    8. Liu, Junwei & Zhang, Ji & Zhang, Debao & Jiao, Shifei & Xing, Jincheng & Tang, Huajie & Zhang, Ying & Li, Shuai & Zhou, Zhihua & Zuo, Jian, 2020. "Sub-ambient radiative cooling with wind cover," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ji & Yuan, Jianjuan & Liu, Junwei & Zhou, Zhihua & Sui, Jiyuan & Xing, Jincheng & Zuo, Jian, 2021. "Cover shields for sub-ambient radiative cooling: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Pirvaram, Atousa & Talebzadeh, Nima & Leung, Siu Ning & O'Brien, Paul G., 2022. "Radiative cooling for buildings: A review of techno-enviro-economics and life-cycle assessment methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Marco Noro & Simone Mancin & Roger Riehl, 2021. "Energy and Economic Sustainability of a Trigeneration Solar System Using Radiative Cooling in Mediterranean Climate," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    4. Farooq, Abdul Samad & Zhang, Peng & Gao, Yongfeng & Gulfam, Raza, 2021. "Emerging radiative materials and prospective applications of radiative sky cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Gopalakrishna Gangisetty & Ron Zevenhoven, 2023. "A Review of Nanoparticle Material Coatings in Passive Radiative Cooling Systems Including Skylights," Energies, MDPI, vol. 16(4), pages 1-59, February.
    6. Lu, Xing & Xu, Peng & Wang, Huilong & Yang, Tao & Hou, Jin, 2016. "Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1079-1097.
    7. Huang, Jiachen & Zhang, Xuan-kai & Yu, Xiyu & Tang, G.H. & Wang, Xinyu & Du, Mu, 2024. "Scalable self-adaptive radiative cooling film through VO2-based switchable core–shell particles," Renewable Energy, Elsevier, vol. 224(C).
    8. Jia, Linrui & Lu, Lin & Chen, Jianheng & Han, Jie, 2022. "A novel radiative sky cooling-assisted ground-coupled heat exchanger system to improve thermal and energy efficiency for buildings in hot and humid regions," Applied Energy, Elsevier, vol. 322(C).
    9. Zheng, Xinyao & Zhou, Yuekuan, 2024. "Dynamic heat-transfer mechanism and performance analysis of an integrated Trombe wall with radiant cooling for natural cooling energy harvesting and air-conditioning," Energy, Elsevier, vol. 288(C).
    10. Byoungsu Ko & Dasol Lee & Trevon Badloe & Junsuk Rho, 2018. "Metamaterial-Based Radiative Cooling: Towards Energy-Free All-Day Cooling," Energies, MDPI, vol. 12(1), pages 1-14, December.
    11. Yan, Tian & Xu, Dawei & Meng, Jing & Xu, Xinhua & Yu, Zhongyi & Wu, Huijun, 2024. "A review of radiative sky cooling technology and its application in building systems," Renewable Energy, Elsevier, vol. 220(C).
    12. Li, Shuai & Zhou, Zhihua & Liu, Junwei & Zhang, Ji & Tang, Huajie & Zhang, Zhuofen & Na, Yanling & Jiang, Chongxu, 2022. "Research on indirect cooling for photovoltaic panels based on radiative cooling," Renewable Energy, Elsevier, vol. 198(C), pages 947-959.
    13. Liu, Junwei & Yuan, Jianjuan & Zhang, Ji & Tang, Huajie & Huang, Ke & Xing, Jincheng & Zhang, Debao & Zhou, Zhihua & Zuo, Jian, 2021. "Performance evaluation of various strategies to improve sub-ambient radiative sky cooling," Renewable Energy, Elsevier, vol. 169(C), pages 1305-1316.
    14. Han, Tian & Zhou, Zhihua & Du, Yahui & Wang, Wufan & Wang, Cheng & Yang, Xueqing & Liu, Junwei & Yang, Haibin & Cui, Hongzhi & Yan, Jinyue, 2024. "Advances in radiative sky cooling based on the promising electrospinning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    15. Jia, Linrui & Lu, Lin & Chen, Jianheng, 2023. "Exploring the cooling potential maps of a radiative sky cooling radiator-assisted ground source heat pump system in China," Applied Energy, Elsevier, vol. 349(C).
    16. Wang, Cun-Hai & Chen, Hao & Jiang, Ze-Yi & Zhang, Xin-Xin, 2023. "Design and experimental validation of an all-day passive thermoelectric system via radiative cooling and greenhouse effects," Energy, Elsevier, vol. 263(PA).
    17. Xuan, Qingdong & Yang, Ning & Kai, Mingfeng & Wang, Chuyao & Jiang, Bin & Liu, Xunfen & Li, Guiqiang & Pei, Gang & Zhao, Bin, 2024. "Combined daytime radiative cooling and solar photovoltaic/thermal hybrid system for year-round energy saving in buildings," Energy, Elsevier, vol. 304(C).
    18. Su, Xiaosong & Zhang, Ling & Liu, Zhongbing & Luo, Yongqiang & Chen, Dapeng & Li, Weijiao, 2021. "Performance evaluation of a novel building envelope integrated with thermoelectric cooler and radiative sky cooler," Renewable Energy, Elsevier, vol. 171(C), pages 1061-1078.
    19. Bijarniya, Jay Prakash & Sarkar, Jahar, 2020. "Climate change effect on the cooling performance and assessment of passive daytime photonic radiative cooler in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    20. Vilà, Roger & Medrano, Marc & Castell, Albert, 2023. "Climate change influences in the determination of the maximum power potential of radiative cooling. Evolution and seasonal study in Europe," Renewable Energy, Elsevier, vol. 212(C), pages 500-513.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:189:y:2024:i:pa:s1364032123008304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.