IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v187y2023ics1364032123006214.html
   My bibliography  Save this article

A four-level hierarchical framework for reviewing infrastructure sustainability assessment systems

Author

Listed:
  • Pan, Wei
  • Yu, Cong
  • Bai, Yefei
  • Du, Jia

Abstract

Infrastructure sustainability assessment (ISA) has become increasingly important for achieving sustainable development goals. ISA systems are widely adopted by different stakeholders such as governments, architects, engineers, and academics to assess the manner in which sustainability is incorporated in infrastructure projects. However, a systematic understanding of ISA systems is lacking, and the multifaceted and complicated features of such systems were overlooked in the literature. Thus, this study aims to develop a four-level hierarchical framework (covering the levels of contexts, methods, measures, and results) based on the dialectical system theory, and to use this framework for a comprehensive review of international ISA systems. Fourteen existing ISA systems were reviewed, and six were carefully selected and examined in detail. An enhanced five-pillar concept (i.e. technology, economy, environment, society, and institution) of infrastructure sustainability is proposed to evaluate the measures included in the ISA systems. The results show that dialectics exist within, and encounter challenges at, all four levels of the systems. This study suggests four recommendations to improve the ISA systems: enhancing the balanced concept of sustainability, advancing the promotion of ISA systems, pursuing user-friendliness, and considering the synergies between the assessment components of ISA systems. The developed framework with its dialectical considerations provides a new approach to understanding the complexity and dynamics of ISA and will help raise practitioners' awareness of the dialectical connections in ISA systems and support practitioners’ management practices. In addition, the five-pillar concept of sustainability is beneficial for stakeholders in appraising infrastructure more comprehensively.

Suggested Citation

  • Pan, Wei & Yu, Cong & Bai, Yefei & Du, Jia, 2023. "A four-level hierarchical framework for reviewing infrastructure sustainability assessment systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:rensus:v:187:y:2023:i:c:s1364032123006214
    DOI: 10.1016/j.rser.2023.113764
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123006214
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113764?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zabihollah Rezaee, 2018. "Supply Chain Management and Business Sustainability Synergy: A Theoretical and Integrated Perspective," Sustainability, MDPI, vol. 10(1), pages 1-17, January.
    2. Bryce, James & Brodie, Stefanie & Parry, Tony & Lo Presti, Davide, 2017. "A systematic assessment of road pavement sustainability through a review of rating tools," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 108-118.
    3. Lucchi, E. & Buda, A., 2022. "Urban green rating systems: Insights for balancing sustainable principles and heritage conservation for neighbourhood and cities renovation planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Tai-Yi Liu & Po-Han Chen & Nelson N. S. Chou, 2019. "Comparison of Assessment Systems for Green Building and Green Civil Infrastructure," Sustainability, MDPI, vol. 11(7), pages 1-22, April.
    5. Seyed Meysam Khoshnava & Raheleh Rostami & Rosli Mohamad Zin & Dalia Štreimikiene & Alireza Yousefpour & Abbas Mardani & Melfi Alrasheedi, 2020. "Contribution of green infrastructure to the implementation of green economy in the context of sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(1), pages 320-342, January.
    6. P.C. Bueno & J.M. Vassallo & K. Cheung, 2015. "Sustainability Assessment of Transport Infrastructure Projects: A Review of Existing Tools and Methods," Transport Reviews, Taylor & Francis Journals, vol. 35(5), pages 622-649, September.
    7. Umberto Berardi, 2012. "Sustainability Assessment in the Construction Sector: Rating Systems and Rated Buildings," Sustainable Development, John Wiley & Sons, Ltd., vol. 20(6), pages 411-424, November.
    8. Chandratilake, S.R. & Dias, W.P.S., 2015. "Ratio based indicators and continuous score functions for better assessment of building sustainability," Energy, Elsevier, vol. 83(C), pages 137-143.
    9. Joseph Huber, 2004. "New Technologies and Environmental Innovation," Books, Edward Elgar Publishing, number 3400.
    10. Stefanie Pfahl, 2005. "Institutional sustainability," International Journal of Sustainable Development, Inderscience Enterprises Ltd, vol. 8(1/2), pages 80-96.
    11. Ricardo Vinuesa & Hossein Azizpour & Iolanda Leite & Madeline Balaam & Virginia Dignum & Sami Domisch & Anna Felländer & Simone Daniela Langhans & Max Tegmark & Francesco Fuso Nerini, 2020. "The role of artificial intelligence in achieving the Sustainable Development Goals," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    12. Kumari, Anita & Kumar Sharma, Anil, 2017. "Infrastructure financing and development: A bibliometric review," International Journal of Critical Infrastructure Protection, Elsevier, vol. 16(C), pages 49-65.
    13. Attahiru, Yusuf Babangida & Aziz, Md. Maniruzzaman A. & Kassim, Khairul Anuar & Shahid, Shamsuddin & Wan Abu Bakar, Wan Azelee & NSashruddin, Thanwa Filza & Rahman, Farahiyah Abdul & Ahamed, Mohd Imra, 2019. "A review on green economy and development of green roads and highways using carbon neutral materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 600-613.
    14. Pan, Wei & Li, Kaijian & Teng, Yue, 2018. "Rethinking system boundaries of the life cycle carbon emissions of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 379-390.
    15. Diaz-Sarachaga, Jose Manuel & Jato-Espino, Daniel & Castro-Fresno, Daniel, 2017. "Methodology for the development of a new Sustainable Infrastructure Rating System for Developing Countries (SIRSDEC)," Environmental Science & Policy, Elsevier, vol. 69(C), pages 65-72.
    16. Scott Thacker & Daniel Adshead & Marianne Fay & Stéphane Hallegatte & Mark Harvey & Hendrik Meller & Nicholas O’Regan & Julie Rozenberg & Graham Watkins & Jim W. Hall, 2019. "Infrastructure for sustainable development," Nature Sustainability, Nature, vol. 2(4), pages 324-331, April.
    17. W. Neil Adger & Jon Barnett & Katrina Brown & Nadine Marshall & Karen O'Brien, 2013. "Cultural dimensions of climate change impacts and adaptation," Nature Climate Change, Nature, vol. 3(2), pages 112-117, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bai, Yefei & Yu, Cong & Pan, Wei, 2024. "Systematic examination of energy performance gap in low-energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaros³aw Brodny & Magdalena Tutak, 2023. "The level of implementing sustainable development goal "Industry, innovation and infrastructure" of Agenda 2030 in the European Union countries: Application of MCDM methods," Oeconomia Copernicana, Institute of Economic Research, vol. 14(1), pages 47-102, March.
    2. Chisomo Kapatsa & Neema Kavishe & Godwin Maro & Sam Zulu, 2023. "The Identification of Sustainability Assessment Indicators for Road Infrastructure Projects in Tanzania," Sustainability, MDPI, vol. 15(20), pages 1-15, October.
    3. Maryna Henrysson & Ranjula Bali Swain & Ashok Swain & Francesco Fuso Nerini, 2024. "Sustainable Development Goals and wellbeing for resilient societies: shocks and recovery," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    4. Damián Rodríguez Estévez & Rosa María Arce Ruíz, 2024. "Assessing Multilateral Development Bank ESG Safeguard Integration with International Sustainability Ratings," Sustainability, MDPI, vol. 16(9), pages 1-27, April.
    5. Noushin Islam & Malindu Sandanayake & Shobha Muthukumaran & Dimuth Navaratna, 2024. "Review on Sustainable Construction and Demolition Waste Management—Challenges and Research Prospects," Sustainability, MDPI, vol. 16(8), pages 1-30, April.
    6. Schreiner, Lena & Madlener, Reinhard, 2022. "Investing in power grid infrastructure as a flexibility option: A DSGE assessment for Germany," Energy Economics, Elsevier, vol. 107(C).
    7. Heather McMillen & Lindsay K. Campbell & Erika S. Svendsen & Renae Reynolds, 2016. "Recognizing Stewardship Practices as Indicators of Social Resilience: In Living Memorials and in a Community Garden," Sustainability, MDPI, vol. 8(8), pages 1-26, August.
    8. Henrik Skaug Sætra, 2021. "AI in Context and the Sustainable Development Goals: Factoring in the Unsustainability of the Sociotechnical System," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    9. Douglas K. Bardsley & Annette M. Bardsley & Marco Conedera, 2023. "The dispersion of climate change impacts from viticulture in Ticino, Switzerland," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(3), pages 1-25, March.
    10. Jeetendra Prakash Aryal & Tek B. Sapkota & Ritika Khurana & Arun Khatri-Chhetri & Dil Bahadur Rahut & M. L. Jat, 2020. "Climate change and agriculture in South Asia: adaptation options in smallholder production systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5045-5075, August.
    11. Caviedes, Julián & Ibarra, José Tomás & Calvet-Mir, Laura & Álvarez-Fernández, Santiago & Junqueira, André Braga, 2024. "Indigenous and local knowledge on social-ecological changes is positively associated with livelihood resilience in a Globally Important Agricultural Heritage System," Agricultural Systems, Elsevier, vol. 216(C).
    12. Xi Liu & Yugang He & Renhong Wu, 2024. "Revolutionizing Environmental Sustainability: The Role of Renewable Energy Consumption and Environmental Technologies in OECD Countries," Energies, MDPI, vol. 17(2), pages 1-21, January.
    13. Bin Xue & Bingsheng Liu & Tao Liang & Dong Zhao & Tao Wang & Xingbin Chen, 2022. "A heterogeneous decision criteria system evaluating sustainable infrastructure development: From the lens of multidisciplinary stakeholder engagement," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(4), pages 556-579, August.
    14. Lena I. Fuldauer & Scott Thacker & Robyn A. Haggis & Francesco Fuso-Nerini & Robert J. Nicholls & Jim W. Hall, 2022. "Targeting climate adaptation to safeguard and advance the Sustainable Development Goals," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    15. Zhang, Zhuo & Zhao, Yongliang & Cai, Haiya & Ajaz, Tahseen, 2023. "Influence of renewable energy infrastructure, Chinese outward FDI, and technical efficiency on ecological sustainability in belt and road node economies," Renewable Energy, Elsevier, vol. 205(C), pages 608-616.
    16. Xinyu Hu & Chun Dong & Yihan Wang, 2023. "Coupled and Coordinated Analysis of Urban Green Development and Ecological Civilization Construction in the Yangtze River Delta Region," Sustainability, MDPI, vol. 15(7), pages 1-26, March.
    17. Wilson, Christopher & van der Velden, Maja, 2022. "Sustainable AI: An integrated model to guide public sector decision-making," Technology in Society, Elsevier, vol. 68(C).
    18. Stéphanie Camaréna, 2021. "Engaging with Artificial Intelligence (AI) with a Bottom-Up Approach for the Purpose of Sustainability: Victorian Farmers Market Association, Melbourne Australia," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    19. Jinyi Li & Zhen Liu & Guizhong Han & Peter Demian & Mohamed Osmani, 2024. "The Relationship Between Artificial Intelligence (AI) and Building Information Modeling (BIM) Technologies for Sustainable Building in the Context of Smart Cities," Sustainability, MDPI, vol. 16(24), pages 1-40, December.
    20. Keeheon Lee, 2021. "A Systematic Review on Social Sustainability of Artificial Intelligence in Product Design," Sustainability, MDPI, vol. 13(5), pages 1-29, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:187:y:2023:i:c:s1364032123006214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.