IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v187y2023ics1364032123005890.html
   My bibliography  Save this article

The meaning of energy islands: Towards a theoretical framework

Author

Listed:
  • Rettig, E.
  • Fischhendler, I.
  • Schlecht, F.

Abstract

The term ‘energy island’ encompasses contradicting interpretations to electricity connectivity and isolation. Scholars and practitioners use the same term to describe contrasting scenarios that address different problems and widely divergent policy goals. These may include physically secluded islands trying to connect to the mainland to increase their energy security, or countries wishing to actively isolate their electricity systems from a hostile surrounding region, or artificial islands that enable more integration of renewable energy systems, or microgrids that enable communities and regions to voluntarily disconnect from their country's national grid for political purposes. The understanding of energy islands as either an opportunity to pursue or a vulnerability to overcome can thus differ based on factors such as economic constraints, technical capabilities, security of supply, or political aspirations for sovereignty and independence. This study provides a comprehensive framework for unpacking the term 'energy island' and analyzing the various factors that influence its development. It does so by conceptualizing energy islands as a spatial interaction between three boundaries: a physical boundary, a political boundary, and an electricity service boundary. By examining the interplay between these boundaries, this study identifies six different types of energy islands that represent six distinct configurations of electricity isolation, as well as seven policy trajectories that allow them to transition from one type to another. This novel theoretical framework facilitates a better understanding of why and when policymakers choose to either abandon or strengthen their country's electricity isolation and identifies the physical and institutional solutions they employ to achieve their goals.

Suggested Citation

  • Rettig, E. & Fischhendler, I. & Schlecht, F., 2023. "The meaning of energy islands: Towards a theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:rensus:v:187:y:2023:i:c:s1364032123005890
    DOI: 10.1016/j.rser.2023.113732
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123005890
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113732?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bertheau, Paul & Blechinger, Philipp, 2018. "Resilient solar energy island supply to support SDG7 on the Philippines: Techno-economic optimized electrification strategy for small islands," Utilities Policy, Elsevier, vol. 54(C), pages 55-77.
    2. Xiaoshu Cao & Huiling Chen & Feiwen Liang & Wulin Wang, 2018. "Measurement and Spatial Differentiation Characteristics of Transit Equity: A Case Study of Guangzhou, China," Sustainability, MDPI, vol. 10(4), pages 1-17, April.
    3. Di Cosmo, Valeria & Lynch, Muireann Á., 2016. "Competition and the single electricity market: Which lessons for Ireland?," Utilities Policy, Elsevier, vol. 41(C), pages 40-47.
    4. Hannah Mareike Marczinkowski & Poul Alberg Østergaard & Søren Roth Djørup, 2019. "Transitioning Island Energy Systems—Local Conditions, Development Phases, and Renewable Energy Integration," Energies, MDPI, vol. 12(18), pages 1-20, September.
    5. Volkova, A. & Koduvere, H. & Pieper, H., 2022. "Large-scale heat pumps for district heating systems in the Baltics: Potential and impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Jamal, Taskin & Urmee, Tania & Shafiullah, G.M., 2020. "Planning of off-grid power supply systems in remote areas using multi-criteria decision analysis," Energy, Elsevier, vol. 201(C).
    7. Hamed, Tareq Abu & Bressler, Lindsey, 2019. "Energy security in Israel and Jordan: The role of renewable energy sources," Renewable Energy, Elsevier, vol. 135(C), pages 378-389.
    8. Jørgensen, Sven Erik & Nielsen, Søren Nors, 2015. "A carbon cycling model developed for the renewable Energy Danish Island, Samsø," Ecological Modelling, Elsevier, vol. 306(C), pages 106-120.
    9. Boute, Anatole, 2016. "Off-grid renewable energy in remote Arctic areas: An analysis of the Russian Far East," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1029-1037.
    10. Selosse, Sandrine & Ricci, Olivia & Garabedian, Sabine & Maïzi, Nadia, 2018. "Exploring sustainable energy future in Reunion Island," Utilities Policy, Elsevier, vol. 55(C), pages 158-166.
    11. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    12. Lee, Ju-Sung & Cherif, Ali & Yoon, Ha-Jun & Seo, Seung-Kwon & Bae, Ju-Eon & Shin, Ho-Jin & Lee, Chulgu & Kwon, Hweeung & Lee, Chul-Jin, 2022. "Large-scale overseas transportation of hydrogen: Comparative techno-economic and environmental investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    13. Henning Meschede & Paul Bertheau & Siavash Khalili & Christian Breyer, 2022. "A review of 100% renewable energy scenarios on islands," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(6), November.
    14. Edler, Jakob & Blind, Knut & Frietsch, Rainer & Kimpeler, Simone & Kroll, Henning & Lerch, Christian & Reiss, Thomas & Roth, Florian & Schubert, Torben & Schuler, Johanna & Walz, Rainer, 2020. "Technology sovereignty: From demand to concept [Technologiesouveränität: Von der Forderung zum Konzept]," Perspectives – Policy Briefs 02 / 2020, Fraunhofer Institute for Systems and Innovation Research (ISI).
    15. Ustun, Taha Selim & Ozansoy, Cagil & Zayegh, Aladin, 2011. "Recent developments in microgrids and example cases around the world—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4030-4041.
    16. Kuang, Yonghong & Zhang, Yongjun & Zhou, Bin & Li, Canbing & Cao, Yijia & Li, Lijuan & Zeng, Long, 2016. "A review of renewable energy utilization in islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 504-513.
    17. Itay Fischhendler & Daniel Nathan & Dror Boymel, 2015. "Marketing Renewable Energy through Geopolitics: Solar Farms in Israel," Global Environmental Politics, MIT Press, vol. 15(2), pages 98-120, May.
    18. Augutis, Juozas & Krikštolaitis, Ričardas & Martišauskas, Linas & Urbonienė, Sigita & Urbonas, Rolandas & Ušpurienė, Aistė Barbora, 2020. "Analysis of energy security level in the Baltic States based on indicator approach," Energy, Elsevier, vol. 199(C).
    19. Riva Sanseverino, Eleonora & Riva Sanseverino, Raffaella & Favuzza, Salvatore & Vaccaro, Valentina, 2014. "Near zero energy islands in the Mediterranean: Supporting policies and local obstacles," Energy Policy, Elsevier, vol. 66(C), pages 592-602.
    20. Sperling, Karl, 2017. "How does a pioneer community energy project succeed in practice? The case of the Samsø Renewable Energy Island," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 884-897.
    21. Hossein Madi & Dmytro Lytvynenko & Tilman Schildhauer & Peter Jansohn, 2023. "Decarbonisation of Geographical Islands and the Feasibility of Green Hydrogen Production Using Excess Electricity," Energies, MDPI, vol. 16(10), pages 1-18, May.
    22. Shortall, Ruth & Kharrazi, Ali, 2017. "Cultural factors of sustainable energy development: A case study of geothermal energy in Iceland and Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 101-109.
    23. Di Leo, Senatro & Pietrapertosa, Filomena & Salvia, Monica & Cosmi, Carmelina, 2021. "Contribution of the Basilicata region to decarbonisation of the energy system: results of a scenario analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    24. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.
    25. Newbery, David, 2018. "Shifting demand and supply over time and space to manage intermittent generation: The economics of electrical storage," Energy Policy, Elsevier, vol. 113(C), pages 711-720.
    26. Lee, Taedong & Glick, Mark B. & Lee, Jae-Hyup, 2020. "Island energy transition: Assessing Hawaii's multi-level, policy-driven approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    27. Juntunen, Jouni K. & Martiskainen, Mari, 2021. "Improving understanding of energy autonomy: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    28. Itay Fischhendler & Lior Herman & Lioz David, 2022. "Light at the End of the Panel: The Gaza Strip and the Interplay Between Geopolitical Conflict and Renewable Energy Transition," New Political Economy, Taylor & Francis Journals, vol. 27(1), pages 1-18, January.
    29. Bundhoo, Zumar M.A. & Shah, Kalim U. & Surroop, Dinesh, 2018. "Climate proofing island energy infrastructure systems: Framing resilience based policy interventions," Utilities Policy, Elsevier, vol. 55(C), pages 41-51.
    30. Ries, Jan & Gaudard, Ludovic & Romerio, Franco, 2016. "Interconnecting an isolated electricity system to the European market: The case of Malta," Utilities Policy, Elsevier, vol. 40(C), pages 1-14.
    31. Guido Pepermans, 2019. "European energy market liberalization: experiences and challenges," International Journal of Economic Policy Studies, Springer, vol. 13(1), pages 3-26, January.
    32. Roberto De Lotto & Calogero Micciché & Elisabetta M. Venco & Angelo Bonaiti & Riccardo De Napoli, 2022. "Energy Communities: Technical, Legislative, Organizational, and Planning Features," Energies, MDPI, vol. 15(5), pages 1-22, February.
    33. Harald Bathelt & Johannes Glückler, 2003. "Toward a relational economic geography," Journal of Economic Geography, Oxford University Press, vol. 3(2), pages 117-144, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gonzalez-Reina, Antonio Enrique & Garcia-Torres, Felix & Girona-Garcia, Victor & Sanchez-Sanchez-de-Puerta, Alvaro & Jimenez-Romero, F.J. & Jimenez-Hornero, Jorge E., 2024. "Cooperative model predictive control for avoiding critical instants of energy resilience in networked microgrids," Applied Energy, Elsevier, vol. 369(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Walter Leal Filho & Abdul-Lateef Balogun & Dinesh Surroop & Amanda Lange Salvia & Kapil Narula & Chunlan Li & Julian David Hunt & Andrea Gatto & Ayyoob Sharifi & Haibo Feng & Stella Tsani & Hossein Az, 2022. "Realising the Potential of Renewable Energy as a Tool for Energy Security in Small Island Developing States," Sustainability, MDPI, vol. 14(9), pages 1-21, April.
    2. Lammers, Katrin & Bertheau, Paul & Blechinger, Philipp, 2020. "Exploring requirements for sustainable energy supply planning with regard to climate resilience of Southeast Asian islands," Energy Policy, Elsevier, vol. 146(C).
    3. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    4. Anita De Franco & Elisabetta Venco & Roberto De Lotto & Caterina Pietra & Florian Kutzner & Mona Bielig & Melanie Vogel, 2023. "Drivers, Motivations, and Barriers in the Creation of Energy Communities: Insights from the City of Segrate, Italy," Energies, MDPI, vol. 16(16), pages 1-13, August.
    5. Hunt, Julian David & Zakeri, Behnam & Falchetta, Giacomo & Nascimento, Andreas & Wada, Yoshihide & Riahi, Keywan, 2020. "Mountain Gravity Energy Storage: A new solution for closing the gap between existing short- and long-term storage technologies," Energy, Elsevier, vol. 190(C).
    6. Leslie Ayagapin & Jean Philippe Praene & Doorgeshwaree Jaggeshar & Dinesh Surroop, 2021. "Prospective Life Cycle Assessment: Effect of Electricity Decarbonization in Building Sector," Energies, MDPI, vol. 14(11), pages 1-17, May.
    7. Radtke, Jörg & Bohn, Nino S., 2023. "Mind the gap: Community member perceptions of shortcomings in diversity and inclusivity of local energy projects in Germany," Utilities Policy, Elsevier, vol. 85(C).
    8. Sabine, Garabedian & Avotra, Narindranjanahary & Olivia, Ricci & Sandrine, Selosse, 2020. "A macroeconomic evaluation of a carbon tax in overseas territories: A CGE model for Reunion Island," Energy Policy, Elsevier, vol. 147(C).
    9. Andrea A. Eras-Almeida & Miguel A. Egido-Aguilera & Philipp Blechinger & Sarah Berendes & Estefanía Caamaño & Enrique García-Alcalde, 2020. "Decarbonizing the Galapagos Islands: Techno-Economic Perspectives for the Hybrid Renewable Mini-Grid Baltra–Santa Cruz," Sustainability, MDPI, vol. 12(6), pages 1-47, March.
    10. Galimova, Tansu & Satymov, Rasul & Keiner, Dominik & Breyer, Christian, 2024. "Sustainable energy transition of Greenland and its prospects as a potential Arctic e-fuel and e-chemical export hub for Europe and East Asia," Energy, Elsevier, vol. 286(C).
    11. Olivia Francesca B. Agua & Robert Joseph A. Basilio & Mc Erschad D. Pabillan & Michael T. Castro & Philipp Blechinger & Joey D. Ocon, 2020. "Decentralized versus Clustered Microgrids: An Energy Systems Study for Reliable Off-Grid Electrification of Small Islands," Energies, MDPI, vol. 13(17), pages 1-22, August.
    12. Pascasio, Jethro Daniel A. & Esparcia, Eugene A. & Castro, Michael T. & Ocon, Joey D., 2021. "Comparative assessment of solar photovoltaic-wind hybrid energy systems: A case for Philippine off-grid islands," Renewable Energy, Elsevier, vol. 179(C), pages 1589-1607.
    13. Pombo, Daniel Vázquez & Martinez-Rico, Jon & Marczinkowski, Hannah M., 2022. "Towards 100% renewable islands in 2040 via generation expansion planning: The case of São Vicente, Cape Verde," Applied Energy, Elsevier, vol. 315(C).
    14. Barrera-Santana, J. & Sioshansi, Ramteen, 2023. "An optimization framework for capacity planning of island electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    15. Xu, Yifan & Ji, Mengmeng & Klemeš, Jiří Jaromír & Tao, Hengcong & Zhu, Baikang & Varbanov, Petar Sabev & Yuan, Meng & Wang, Bohong, 2023. "Optimal renewable energy export strategies of islands: Hydrogen or electricity?," Energy, Elsevier, vol. 269(C).
    16. Giulia Grazioli & Sophie Chlela & Sandrine Selosse & Nadia Maïzi, 2022. "The Multi-Facets of Increasing the Renewable Energy Integration in Power Systems," Energies, MDPI, vol. 15(18), pages 1-26, September.
    17. Groppi, Daniele & Pfeifer, Antun & Garcia, Davide Astiaso & Krajačić, Goran & Duić, Neven, 2021. "A review on energy storage and demand side management solutions in smart energy islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Rusu, Eugen & Onea, Florin, 2019. "An assessment of the wind and wave power potential in the island environment," Energy, Elsevier, vol. 175(C), pages 830-846.
    19. Østergaard, Poul Alberg & Jantzen, Jan & Marczinkowski, Hannah Mareike & Kristensen, Michael, 2019. "Business and socioeconomic assessment of introducing heat pumps with heat storage in small-scale district heating systems," Renewable Energy, Elsevier, vol. 139(C), pages 904-914.
    20. Ferdaus, Md Meftahul & Dam, Tanmoy & Anavatti, Sreenatha & Das, Sarobi, 2024. "Digital technologies for a net-zero energy future: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:187:y:2023:i:c:s1364032123005890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.