IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v184y2023ics1364032123004239.html
   My bibliography  Save this article

Complementary potential of wind-solar-hydro power in Chinese provinces: Based on a high temporal resolution multi-objective optimization model

Author

Listed:
  • Fan, Jing-Li
  • Huang, Xi
  • Shi, Jie
  • Li, Kai
  • Cai, Jingwen
  • Zhang, Xian

Abstract

In the context of carbon neutrality, renewable energy, especially wind power, solar PV and hydropower, will become the most important power sources in the future low-carbon power system. Since wind power and solar PV are specifically intermittent and space-heterogeneity, an assessment of renewable energy potential considering the variability of wind power and solar PV with high temporal resolution in different regions will facilitate more accurate identification of the decarbonization pathway of power system. In this paper, the complementary output potential of wind-solar-hydro power every 15 min in 31 Chinese provinces is evaluated by developing a multi-objective optimization model based on Nondominated Sorting Genetic Algorithm II. The results show that the total annual complementary power generation potential in China is 17.57 PWh, of which the three components account for 47.8%, 25.3% and 26.9%, respectively. Inner Mongolia and Tibet are the major renewable energy source provinces with annual complementary power generation potential of 5330 TWh and 3907 TWh, accounting for 30.3% and 13.7% of the total power generation potential, respectively. The temporal potential of wind-solar-hydro power varies greatly, with daily potential is more volatile than monthly. Seasonal and spatial heterogeneity of the complemental renewable potential makes some provinces suffer power shortage during long-hours period especially in winter. Our findings will encourage a higher penetration of renewable energy, the promotion of multi-energy complementarity, and the development of inter-provincial power transmission and energy storage infrastructure in China's future power sector.

Suggested Citation

  • Fan, Jing-Li & Huang, Xi & Shi, Jie & Li, Kai & Cai, Jingwen & Zhang, Xian, 2023. "Complementary potential of wind-solar-hydro power in Chinese provinces: Based on a high temporal resolution multi-objective optimization model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
  • Handle: RePEc:eee:rensus:v:184:y:2023:i:c:s1364032123004239
    DOI: 10.1016/j.rser.2023.113566
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123004239
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113566?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexander E. MacDonald & Christopher T. M. Clack & Anneliese Alexander & Adam Dunbar & James Wilczak & Yuanfu Xie, 2016. "Future cost-competitive electricity systems and their impact on US CO2 emissions," Nature Climate Change, Nature, vol. 6(5), pages 526-531, May.
    2. Scholz, Yvonne & Gils, Hans Christian & Pietzcker, Robert C., 2017. "Application of a high-detail energy system model to derive power sector characteristics at high wind and solar shares," Energy Economics, Elsevier, vol. 64(C), pages 568-582.
    3. Tianguang Lu & Peter Sherman & Xinyu Chen & Shi Chen & Xi Lu & Michael McElroy, 2020. "India’s potential for integrating solar and on- and offshore wind power into its energy system," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    4. Li, Mingquan & Virguez, Edgar & Shan, Rui & Tian, Jialin & Gao, Shuo & Patiño-Echeverri, Dalia, 2022. "High-resolution data shows China’s wind and solar energy resources are enough to support a 2050 decarbonized electricity system," Applied Energy, Elsevier, vol. 306(PA).
    5. Wang, Zhenni & Wen, Xin & Tan, Qiaofeng & Fang, Guohua & Lei, Xiaohui & Wang, Hao & Yan, Jinyue, 2021. "Potential assessment of large-scale hydro-photovoltaic-wind hybrid systems on a global scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    6. Seck, Gondia Sokhna & Krakowski, Vincent & Assoumou, Edi & Maïzi, Nadia & Mazauric, Vincent, 2020. "Embedding power system’s reliability within a long-term Energy System Optimization Model: Linking high renewable energy integration and future grid stability for France by 2050," Applied Energy, Elsevier, vol. 257(C).
    7. Arango-Aramburo, S. & Ríos-Ocampo, J.P. & Larsen, E.R., 2020. "Examining the decreasing share of renewable energy amid growing thermal capacity: The case of South America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    8. Liu, Laibao & Wang, Zheng & Wang, Yang & Wang, Jun & Chang, Rui & He, Gang & Tang, Wenjun & Gao, Ziqi & Li, Jiangtao & Liu, Changyi & Zhao, Lin & Qin, Dahe & Li, Shuangcheng, 2020. "Optimizing wind/solar combinations at finer scales to mitigate renewable energy variability in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    9. Howlader, Abdul Motin & Urasaki, Naomitsu & Yona, Atsushi & Senjyu, Tomonobu & Saber, Ahmed Yousuf, 2013. "A review of output power smoothing methods for wind energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 135-146.
    10. Huang, Kangdi & Luo, Peng & Liu, Pan & KIM, Jong Suk & Wang, Yintang & Xu, Weifeng & Li, He & Gong, Yu, 2022. "Improving complementarity of a hybrid renewable energy system to meet load demand by using hydropower regulation ability," Energy, Elsevier, vol. 248(C).
    11. Purohit, Ishan & Purohit, Pallav, 2017. "Technical and economic potential of concentrating solar thermal power generation in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 648-667.
    12. Aghahosseini, Arman & Bogdanov, Dmitrii & Barbosa, Larissa S.N.S. & Breyer, Christian, 2019. "Analysing the feasibility of powering the Americas with renewable energy and inter-regional grid interconnections by 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 187-205.
    13. Lugovoy, Oleg & Gao, Shuo & Gao, Ji & Jiang, Kejun, 2021. "Feasibility study of China's electric power sector transition to zero emissions by 2050," Energy Economics, Elsevier, vol. 96(C).
    14. D’Isidoro, Massimo & Briganti, Gino & Vitali, Lina & Righini, Gaia & Adani, Mario & Guarnieri, Guido & Moretti, Lorenzo & Raliselo, Muso & Mahahabisa, Mabafokeng & Ciancarella, Luisella & Zanini, Gabr, 2020. "Estimation of solar and wind energy resources over Lesotho and their complementarity by means of WRF yearly simulation at high resolution," Renewable Energy, Elsevier, vol. 158(C), pages 114-129.
    15. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Characterization of wind resource in China from a new perspective," Energy, Elsevier, vol. 167(C), pages 994-1010.
    16. Gondia Sokhna Seck & Vincent Krakowski & Edi Assoumou & Nadia Maïzi & Vincent Mazauric, 2020. "Embedding power system's reliability within a long-term Energy System Optimization Model: Linking high renewable energy integration and future grid stability for France by 2050," Post-Print hal-02418375, HAL.
    17. Ramgolam, Yatindra K. & Soyjaudah, K.M.S., 2015. "Unveiling the solar resource potential for photovoltaic applications in Mauritius," Renewable Energy, Elsevier, vol. 77(C), pages 94-100.
    18. Zhou, Sheng & Wang, Yu & Zhou, Yuyu & Clarke, Leon E. & Edmonds, James A., 2018. "Roles of wind and solar energy in China’s power sector: Implications of intermittency constraints," Applied Energy, Elsevier, vol. 213(C), pages 22-30.
    19. Liu, Yongqian & Qiao, Yanhui & Han, Shuang & Tao, Tao & Yan, Jie & Li, Li & Bekhbat, Galsan & Munkhtuya, Erdenebat, 2021. "Rotor equivalent wind speed calculation method based on equivalent power considering wind shear and tower shadow," Renewable Energy, Elsevier, vol. 172(C), pages 882-896.
    20. Roche, O.M. & Blanchard, R.E., 2018. "Design of a solar energy centre for providing lighting and income-generating activities for off-grid rural communities in Kenya," Renewable Energy, Elsevier, vol. 118(C), pages 685-694.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Choo, Hyunwoong & Kim, Yong-Gun & Kim, Dongwoo, 2024. "Power sector carbon reduction review for South Korea in 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Shihua & Hu, Weihao & Liu, Wen & Zhang, Zhenyuan & Bai, Chunguang & Huang, Qi & Chen, Zhe, 2022. "Study on the decarbonization in China's power sector under the background of carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    2. Gao, Yang & Ma, Shaoxiu & Wang, Tao & Miao, Changhong & Yang, Fan, 2022. "Distributed onshore wind farm siting using intelligent optimization algorithm based on spatial and temporal variability of wind energy," Energy, Elsevier, vol. 258(C).
    3. Liu, Laibao & Wang, Zheng & Wang, Yang & Wang, Jun & Chang, Rui & He, Gang & Tang, Wenjun & Gao, Ziqi & Li, Jiangtao & Liu, Changyi & Zhao, Lin & Qin, Dahe & Li, Shuangcheng, 2020. "Optimizing wind/solar combinations at finer scales to mitigate renewable energy variability in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    4. Sun, Yanwei & Li, Ying & Wang, Run & Ma, Renfeng, 2023. "Assessing the national synergy potential of onshore and offshore renewable energy from the perspective of resources dynamic and complementarity," Energy, Elsevier, vol. 279(C).
    5. Han, Shuo & He, Mengjiao & Zhao, Ziwen & Chen, Diyi & Xu, Beibei & Jurasz, Jakub & Liu, Fusheng & Zheng, Hongxi, 2023. "Overcoming the uncertainty and volatility of wind power: Day-ahead scheduling of hydro-wind hybrid power generation system by coordinating power regulation and frequency response flexibility," Applied Energy, Elsevier, vol. 333(C).
    6. Fernandez Vazquez, Carlos A.A. & Vansighen, Thomas & Fernandez Fuentes, Miguel H. & Quoilin, Sylvain, 2024. "Energy transition implications for Bolivia. Long-term modelling with short-term assessment of future scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. Zhang, Yusheng & Ma, Chao & Yang, Yang & Pang, Xiulan & Lian, Jijian & Wang, Xin, 2022. "Capacity configuration and economic evaluation of a power system integrating hydropower, solar, and wind," Energy, Elsevier, vol. 259(C).
    8. Brumana, Giovanni & Franchini, Giuseppe & Ghirardi, Elisa & Perdichizzi, Antonio, 2022. "Techno-economic optimization of hybrid power generation systems: A renewables community case study," Energy, Elsevier, vol. 246(C).
    9. Pietzcker, Robert C. & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," Applied Energy, Elsevier, vol. 293(C).
    10. Copp, David A. & Nguyen, Tu A. & Byrne, Raymond H. & Chalamala, Babu R., 2022. "Optimal sizing of distributed energy resources for planning 100% renewable electric power systems," Energy, Elsevier, vol. 239(PE).
    11. Christos Agathokleous & Jimmy Ehnberg, 2020. "A Quantitative Study on the Requirement for Additional Inertia in the European Power System until 2050 and the Potential Role of Wind Power," Energies, MDPI, vol. 13(9), pages 1-14, May.
    12. Loisel, Rodica & Lemiale, Lionel & Mima, Silvana & Bidaud, Adrien, 2022. "Strategies for short-term intermittency in long-term prospective scenarios in the French power system," Energy Policy, Elsevier, vol. 169(C).
    13. Xu, Shitian & Liu, Pan & Li, Xiao & Cheng, Qian & Liu, Zheyuan, 2023. "Deriving long-term operating rules of the hydro-wind-PV hybrid energy system considering electricity price," Renewable Energy, Elsevier, vol. 219(P1).
    14. Laha, Priyanka & Chakraborty, Basab, 2021. "Cost optimal combinations of storage technologies for maximizing renewable integration in Indian power system by 2040: Multi-region approach," Renewable Energy, Elsevier, vol. 179(C), pages 233-247.
    15. Nikita Belyak & Steven A. Gabriel & Nikolay Khabarov & Fabricio Oliveira, 2023. "Renewable Energy Expansion under Taxes and Subsidies: A Transmission Operator's Perspective," Papers 2302.10562, arXiv.org, revised Apr 2024.
    16. Wilson Pavon & Manuel Jaramillo & Juan C. Vasquez, 2023. "A Review of Modern Computational Techniques and Their Role in Power System Stability and Control," Energies, MDPI, vol. 17(1), pages 1-17, December.
    17. Zerrahn, Alexander & Schill, Wolf-Peter & Kemfert, Claudia, 2018. "On the economics of electrical storage for variable renewable energy sources," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 108, pages 259-279.
    18. Connor Scott & Mominul Ahsan & Alhussein Albarbar, 2021. "Machine Learning Based Vehicle to Grid Strategy for Improving the Energy Performance of Public Buildings," Sustainability, MDPI, vol. 13(7), pages 1-22, April.
    19. Oskouei, Morteza Zare & Mohammadi-Ivatloo, Behnam & Abapour, Mehdi & Shafiee, Mahmood & Anvari-Moghaddam, Amjad, 2021. "Privacy-preserving mechanism for collaborative operation of high-renewable power systems and industrial energy hubs," Applied Energy, Elsevier, vol. 283(C).
    20. Liu, Jia & Chen, Xi & Yang, Hongxing & Shan, Kui, 2021. "Hybrid renewable energy applications in zero-energy buildings and communities integrating battery and hydrogen vehicle storage," Applied Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:184:y:2023:i:c:s1364032123004239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.