IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v119y2020ics1364032119307257.html
   My bibliography  Save this article

Bioethanol supply chain network design considering land characteristics

Author

Listed:
  • Rahemi, Hasti
  • Torabi, S. Ali
  • Avami, Akram
  • Jolai, Fariborz

Abstract

Biomass is becoming an increasingly widespread source of energy. Yet land, as one of the most important resources in biomass production, is surprisingly understudied in the literature of biomass supply chain planning. This study proposes a novel framework that combines the literature of bioethanol supply chain design with agricultural land planning to simultaneously address optimal supply chain planning and sustainable land use in a bioethanol supply chain. A bi-objective mixed-integer linear programming (MILP) model is proposed to formulate the optimal design and planning of a bioethanol supply chain network considering competition of food and biomass feedstock over the available croplands. The proposed model is capable of making strategic decisions (i.e. locations and capacities of facilities, sourcing and allocation of biomass feedstocks to biorefineries), along with some tactical decisions (i.e. land planning, inventory and production of both biomass feedstock and bioethanol). The model incorporates the two objectives of minimum cost and maximum suitability of crops with their assigned croplands. A novel integration of the FAO framework, the best-worst multi-criteria decision-making method, PROMETHEE II and GIS is used to determine the suitability of available croplands according to the croplands’ soil and topographical characteristics. The performance of the proposed model is demonstrated through a multi-feedstock bioethanol supply chain in Fars province, Iran. It is concluded that the proposed integrated land planning-network design framework outperforms hierarchical approaches in which network design and land planning problems are solved separately in a sequential manner. Also, the case study shows that conditional on implementing second generation bioethanol production, Fars province has the potential to satisfy three percent of the fuel demand for transportation in the country.

Suggested Citation

  • Rahemi, Hasti & Torabi, S. Ali & Avami, Akram & Jolai, Fariborz, 2020. "Bioethanol supply chain network design considering land characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
  • Handle: RePEc:eee:rensus:v:119:y:2020:i:c:s1364032119307257
    DOI: 10.1016/j.rser.2019.109517
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119307257
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109517?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wee, Hui-Ming & Yang, Wen-Hsiung & Chou, Chao-Wu & Padilan, Marivic V., 2012. "Renewable energy supply chains, performance, application barriers, and strategies for further development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5451-5465.
    2. Avami, Akram, 2012. "A model for biodiesel supply chain: A case study in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4196-4203.
    3. Rentizelas, Athanasios A. & Tolis, Athanasios J. & Tatsiopoulos, Ilias P., 2009. "Logistics issues of biomass: The storage problem and the multi-biomass supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 887-894, May.
    4. Mousavi, Babak & Lopez, Neil Stephen A. & Biona, Jose Bienvenido Manuel & Chiu, Anthony S.F. & Blesl, Markus, 2017. "Driving forces of Iran's CO2 emissions from energy consumption: An LMDI decomposition approach," Applied Energy, Elsevier, vol. 206(C), pages 804-814.
    5. Avami, Akram, 2013. "Assessment of optimal biofuel supply chain planning in Iran: Technical, economic, and agricultural perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 761-768.
    6. Bertrand Mareschal & Jean Pierre Brans & Philippe Vincke, 1986. "How to select and how to rank projects: the Prométhée method," ULB Institutional Repository 2013/9307, ULB -- Universite Libre de Bruxelles.
    7. Bai, Yun & Ouyang, Yanfeng & Pang, Jong-Shi, 2016. "Enhanced models and improved solution for competitive biofuel supply chain design under land use constraints," European Journal of Operational Research, Elsevier, vol. 249(1), pages 281-297.
    8. Mohseni, Shayan & Pishvaee, Mir Saman & Sahebi, Hadi, 2016. "Robust design and planning of microalgae biomass-to-biodiesel supply chain: A case study in Iran," Energy, Elsevier, vol. 111(C), pages 736-755.
    9. Brans, J. P. & Vincke, Ph. & Mareschal, B., 1986. "How to select and how to rank projects: The method," European Journal of Operational Research, Elsevier, vol. 24(2), pages 228-238, February.
    10. Babazadeh, Reza & Razmi, Jafar & Pishvaee, Mir Saman & Rabbani, Masoud, 2017. "A sustainable second-generation biodiesel supply chain network design problem under risk," Omega, Elsevier, vol. 66(PB), pages 258-277.
    11. Hessari, F. A., 2005. "Sectoral energy consumption in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(2), pages 203-214, April.
    12. Rezaei, Jafar, 2015. "Best-worst multi-criteria decision-making method," Omega, Elsevier, vol. 53(C), pages 49-57.
    13. Mohammadnejad, M. & Ghazvini, M. & Mahlia, T.M.I. & Andriyana, A., 2011. "A review on energy scenario and sustainable energy in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4652-4658.
    14. Osmani, Atif & Zhang, Jun, 2014. "Economic and environmental optimization of a large scale sustainable dual feedstock lignocellulosic-based bioethanol supply chain in a stochastic environment," Applied Energy, Elsevier, vol. 114(C), pages 572-587.
    15. Aslani, Alireza & Naaranoja, Marja & Zakeri, Bahnam, 2012. "The prime criteria for private sector participation in renewable energy investment in the Middle East (case study: Iran)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1977-1987.
    16. Ghobadian, Barat, 2012. "Liquid biofuels potential and outlook in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4379-4384.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salehi-Amiri, Amirhossein & Zahedi, Ali & Akbapour, Navid & Hajiaghaei-Keshteli, Mostafa, 2021. "Designing a sustainable closed-loop supply chain network for walnut industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Hmouda, Ahmed M.O. & Orzes, Guido & Sauer, Philipp C., 2024. "Sustainable supply chain management in energy production: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    3. Gital Durmaz, Yeşim & Bilgen, Bilge, 2020. "Multi-objective optimization of sustainable biomass supply chain network design," Applied Energy, Elsevier, vol. 272(C).
    4. Jahani, Hamed & Abbasi, Babak & Sheu, Jiuh-Biing & Klibi, Walid, 2024. "Supply chain network design with financial considerations: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 312(3), pages 799-839.
    5. Shahbazbegian, Vahid & Hosseini-Motlagh, Seyyed-Mahdi & Haeri, Abdorrahman, 2020. "Integrated forward/reverse logistics thin-film photovoltaic power plant supply chain network design with uncertain data," Applied Energy, Elsevier, vol. 277(C).
    6. Mondal, Arijit & Giri, Binoy Krishna & Roy, Sankar Kumar, 2023. "An integrated sustainable bio-fuel and bio-energy supply chain: A novel approach based on DEMATEL and fuzzy-random robust flexible programming with Me measure," Applied Energy, Elsevier, vol. 343(C).
    7. Judit Oláh & Eszter Krisán & Anna Kiss & Zoltán Lakner & József Popp, 2020. "PRISMA Statement for Reporting Literature Searches in Systematic Reviews of the Bioethanol Sector," Energies, MDPI, vol. 13(9), pages 1-35, May.
    8. Senocak, Ahmet Alp & Guner Goren, Hacer, 2023. "Three-phase artificial intelligence-geographic information systems-based biomass network design approach: A case study in Denizli," Applied Energy, Elsevier, vol. 343(C).
    9. Santibañez-Aguilar, José Ezequiel & Quiroz-Ramírez, Juan José & Sánchez-Ramírez, Eduardo & Segovia-Hernández, Juan Gabriel & Flores-Tlacuahuac, Antonio & Ponce-Ortega, José María, 2022. "Marginalization index as social measure for Acetone-Butanol-Ethanol supply chain planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    10. Qiuyun Zhu & Xiaoyang Zhou & Aijun Liu & Chong Gao & Lei Xu & Fan Zhao & Ding Zhang & Benjamin Lev, 2022. "Equilibrium Optimization with Multi-Energy-Efficiency-Grade Products: Government and Market Perspective," Energies, MDPI, vol. 15(19), pages 1-23, October.
    11. Islam Hassanin & Matjaz Knez, 2022. "Managing Supply Chain Activities in the Field of Energy Production Focusing on Renewables," Sustainability, MDPI, vol. 14(12), pages 1-33, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khishtandar, Soheila & Zandieh, Mostafa & Dorri, Behrouz, 2017. "A multi criteria decision making framework for sustainability assessment of bioenergy production technologies with hesitant fuzzy linguistic term sets: The case of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1130-1145.
    2. Mollahosseini, Arash & Hosseini, Seyed Amid & Jabbari, Mostafa & Figoli, Alberto & Rahimpour, Ahmad, 2017. "Renewable energy management and market in Iran: A holistic review on current state and future demands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 774-788.
    3. Bairamzadeh, Samira & Saidi-Mehrabad, Mohammad & Pishvaee, Mir Saman, 2018. "Modelling different types of uncertainty in biofuel supply network design and planning: A robust optimization approach," Renewable Energy, Elsevier, vol. 116(PA), pages 500-517.
    4. Misbah Anjum & Vernika Agarwal & P. K. Kapur & Sunil Kumar Khatri, 2020. "Two-phase methodology for prioritization and utility assessment of software vulnerabilities," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 289-300, July.
    5. Hasan, Atiye Haj & Avami, Akram, 2018. "Water and emissions nexus for biodiesel in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 354-363.
    6. Hana Ayadi & Nadia Hamani & Lyes Kermad & Mounir Benaissa, 2021. "Novel Fuzzy Composite Indicators for Locating a Logistics Platform under Sustainability Perspectives," Sustainability, MDPI, vol. 13(7), pages 1-37, April.
    7. R. N. Ossei-Bremang & F. Kemausuor, 2021. "A decision support system for the selection of sustainable biomass resources for bioenergy production," Environment Systems and Decisions, Springer, vol. 41(3), pages 437-454, September.
    8. Ioannis Sitaridis & Fotis Kitsios, 2020. "Competitiveness analysis and evaluation of entrepreneurial ecosystems: a multi-criteria approach," Annals of Operations Research, Springer, vol. 294(1), pages 377-399, November.
    9. Ridha, Hussein Mohammed & Gomes, Chandima & Hizam, Hashim & Ahmadipour, Masoud & Heidari, Ali Asghar & Chen, Huiling, 2021. "Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Xiao-Kang Wang & Wen-Hui Hou & Chao Song & Min-Hui Deng & Yong-Yi Li & Jian-Qiang Wang, 2021. "BW-MaxEnt: A Novel MCDM Method for Limited Knowledge," Mathematics, MDPI, vol. 9(14), pages 1-17, July.
    11. Najafi, G. & Ghobadian, B. & Mamat, R. & Yusaf, T. & Azmi, W.H., 2015. "Solar energy in Iran: Current state and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 931-942.
    12. Bahrami, Mohsen & Abbaszadeh, Payam, 2016. "Development a scenario-based model for Iran׳s energy future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 963-970.
    13. Ozden Tozanli & Gazi Murat Duman & Elif Kongar & Surendra M. Gupta, 2017. "Environmentally Concerned Logistics Operations in Fuzzy Environment: A Literature Survey," Logistics, MDPI, vol. 1(1), pages 1-42, June.
    14. Madjid Tavana & Akram Shaabani & Francisco Javier Santos-Arteaga & Iman Raeesi Vanani, 2020. "A Review of Uncertain Decision-Making Methods in Energy Management Using Text Mining and Data Analytics," Energies, MDPI, vol. 13(15), pages 1-23, August.
    15. Mohammed Mojahid Hossain Chowdhury & Ziaul Haque Munim, 2023. "Dry port location selection using a fuzzy AHP-BWM-PROMETHEE approach," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(2), pages 301-329, June.
    16. Alizadeh, Reza & Soltanisehat, Leili & Lund, Peter D. & Zamanisabzi, Hamed, 2020. "Improving renewable energy policy planning and decision-making through a hybrid MCDM method," Energy Policy, Elsevier, vol. 137(C).
    17. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    18. Guh, Yuh-Yuan, 1997. "Introduction to a new weighting method -- Hierarchy consistency analysis," European Journal of Operational Research, Elsevier, vol. 102(1), pages 215-226, October.
    19. Hajkowicz, Stefan, 2006. "Taking a closer look at multiple criteria analysis and economic evaluation," 2006 Conference (50th), February 8-10, 2006, Sydney, Australia 139785, Australian Agricultural and Resource Economics Society.
    20. Meløn, Mønica García & Aragonés Beltran, Pablo & Carmen González Cruz, M., 2008. "An AHP-based evaluation procedure for Innovative Educational Projects: A face-to-face vs. computer-mediated case study," Omega, Elsevier, vol. 36(5), pages 754-765, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:119:y:2020:i:c:s1364032119307257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.