IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i5p3034-3042.html
   My bibliography  Save this article

Technical review of wind energy potential as small-scale power generation sources in Penang Island Malaysia

Author

Listed:
  • Tiang, Tow Leong
  • Ishak, Dahaman

Abstract

This project presents an investigation and assessment of the wind energy potential in Penang Island, located about 15km off the west (W) coast of Peninsular Malaysia. The wind data were statistically analyzed using Rayleigh distribution function. Based on the investigation, the results show that the measurement site falls under Class 1 of the International System Wind Classification. The climate in Penang Island is highly influenced by the northeast (NE) and southwest (SW) monsoon seasons. Besides that, most of the wind is the prevailing wind from the north (N) and SW directions. Meanwhile, the directions that contribute higher energy frequency are from NE and south-southwest (SSW). The mean annual wind power density (WPD) in this regime is estimated to be about 24.54Wm−2. Furthermore, the mean annual wind energy density (WED) is also forecast to be 17.98kWhm−2month−1. The total annual WED is 216kWhm−2year−1. Thus, the results of this investigation indicate that the grid-network connected to the wind turbine-generator systems may not be a commercially viable proposal in Penang. Nevertheless, a small-scale wind turbine system is more suitable and sustainable in Penang Island.

Suggested Citation

  • Tiang, Tow Leong & Ishak, Dahaman, 2012. "Technical review of wind energy potential as small-scale power generation sources in Penang Island Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3034-3042.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:5:p:3034-3042
    DOI: 10.1016/j.rser.2012.02.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112001268
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.02.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mirhosseini, M. & Sharifi, F. & Sedaghat, A., 2011. "Assessing the wind energy potential locations in province of Semnan in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 449-459, January.
    2. Keyhani, A. & Ghasemi-Varnamkhasti, M. & Khanali, M. & Abbaszadeh, R., 2010. "An assessment of wind energy potential as a power generation source in the capital of Iran, Tehran," Energy, Elsevier, vol. 35(1), pages 188-201.
    3. Celik, Ali N., 2011. "Review of Turkey's current energy status: A case study for wind energy potential of Çanakkale province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2743-2749, August.
    4. Gökçek, Murat & Genç, Mustafa Serdar, 2009. "Evaluation of electricity generation and energy cost of wind energy conversion systems (WECSs) in Central Turkey," Applied Energy, Elsevier, vol. 86(12), pages 2731-2739, December.
    5. Sopian, K. & Othman, M.Y.Hj. & Wirsat, A., 1995. "The wind energy potential of Malaysia," Renewable Energy, Elsevier, vol. 6(8), pages 1005-1016.
    6. Jamil, M. & Parsa, S. & Majidi, M., 1995. "Wind power statistics and an evaluation of wind energy density," Renewable Energy, Elsevier, vol. 6(5), pages 623-628.
    7. Fyrippis, Ioannis & Axaopoulos, Petros J. & Panayiotou, Gregoris, 2010. "Wind energy potential assessment in Naxos Island, Greece," Applied Energy, Elsevier, vol. 87(2), pages 577-586, February.
    8. Kamau, J.N. & Kinyua, R. & Gathua, J.K., 2010. "6 years of wind data for Marsabit, Kenya average over 14m/s at 100m hub height; An analysis of the wind energy potential," Renewable Energy, Elsevier, vol. 35(6), pages 1298-1302.
    9. Cabello, M. & Orza, J.A.G., 2010. "Wind speed analysis in the province of Alicante, Spain. Potential for small-scale wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3185-3191, December.
    10. Mostafaeipour, A. & Sedaghat, A. & Dehghan-Niri, A.A. & Kalantar, V., 2011. "Wind energy feasibility study for city of Shahrbabak in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2545-2556, August.
    11. Mostafaeipour, Ali, 2010. "Productivity and development issues of global wind turbine industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1048-1058, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Osvaldo Rodriguez-Hernandez & Manuel Martinez & Carlos Lopez-Villalobos & Hector Garcia & Rafael Campos-Amezcua, 2019. "Techno-Economic Feasibility Study of Small Wind Turbines in the Valley of Mexico Metropolitan Area," Energies, MDPI, vol. 12(5), pages 1-26, March.
    2. Sakaguchi, Takushi & Tabata, Tomohiro, 2015. "100% electric power potential of PV, wind power, and biomass energy in Awaji island Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1156-1165.
    3. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M. & Lau, Kwan Yiew, 2017. "Feasibility analysis of hybrid photovoltaic/battery/fuel cell energy system for an indigenous residence in East Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1332-1347.
    4. Ho, Lip-Wah, 2016. "Wind energy in Malaysia: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 279-295.
    5. Aliashim Albani & Mohd Zamri Ibrahim, 2017. "Wind Energy Potential and Power Law Indexes Assessment for Selected Near-Coastal Sites in Malaysia," Energies, MDPI, vol. 10(3), pages 1-21, March.
    6. Katsaprakakis, Dimitris Al., 2016. "Hybrid power plants in non-interconnected insular systems," Applied Energy, Elsevier, vol. 164(C), pages 268-283.
    7. Chong, W.T. & Poh, S.C. & Fazlizan, A. & Yip, S.Y. & Chang, C.K. & Hew, W.P., 2013. "Early development of an energy recovery wind turbine generator for exhaust air system," Applied Energy, Elsevier, vol. 112(C), pages 568-575.
    8. Fadaeenejad, M. & Radzi, M.A.M. & AbKadir, M.Z.A. & Hizam, H., 2014. "Assessment of hybrid renewable power sources for rural electrification in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 299-305.
    9. Howlader, Abdul Motin & Urasaki, Naomitsu & Yona, Atsushi & Senjyu, Tomonobu & Saber, Ahmed Yousuf, 2013. "A review of output power smoothing methods for wind energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 135-146.
    10. Diaf, S. & Notton, G., 2013. "Technical and economic analysis of large-scale wind energy conversion systems in Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 37-51.
    11. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    12. Minaeian, Ali & Sedaghat, Ahmad & Mostafaeipour, Ali & Akbar Alemrajabi, Ali, 2017. "Exploring economy of small communities and households by investing on harnessing wind energy in the province of Sistan-Baluchestan in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 835-847.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pishgar-Komleh, S.H. & Keyhani, A. & Sefeedpari, P., 2015. "Wind speed and power density analysis based on Weibull and Rayleigh distributions (a case study: Firouzkooh county of Iran)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 313-322.
    2. Fazelpour, Farivar & Soltani, Nima & Soltani, Sina & Rosen, Marc A., 2015. "Assessment of wind energy potential and economics in the north-western Iranian cities of Tabriz and Ardabil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 87-99.
    3. Yaniktepe, B. & Koroglu, T. & Savrun, M.M., 2013. "Investigation of wind characteristics and wind energy potential in Osmaniye, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 703-711.
    4. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    5. Minaeian, Ali & Sedaghat, Ahmad & Mostafaeipour, Ali & Akbar Alemrajabi, Ali, 2017. "Exploring economy of small communities and households by investing on harnessing wind energy in the province of Sistan-Baluchestan in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 835-847.
    6. Mostafaeipour, Ali & Sedaghat, Ahmad & Ghalishooyan, Morteza & Dinpashoh, Yagob & Mirhosseini, Mojtaba & Sefid, Mohammad & Pour-Rezaei, Maryam, 2013. "Evaluation of wind energy potential as a power generation source for electricity production in Binalood, Iran," Renewable Energy, Elsevier, vol. 52(C), pages 222-229.
    7. Sergei Kolesnik & Yossi Rabinovitz & Michael Byalsky & Asher Yahalom & Alon Kuperman, 2023. "Assessment of Wind Speed Statistics in Samaria Region and Potential Energy Production," Energies, MDPI, vol. 16(9), pages 1-35, May.
    8. Birgir Freyr Ragnarsson & Gudmundur V. Oddsson & Runar Unnthorsson & Birgir Hrafnkelsson, 2015. "Levelized Cost of Energy Analysis of a Wind Power Generation System at Búrfell in Iceland," Energies, MDPI, vol. 8(9), pages 1-22, September.
    9. Akpınar, Adem, 2013. "Evaluation of wind energy potentiality at coastal locations along the north eastern coasts of Turkey," Energy, Elsevier, vol. 50(C), pages 395-405.
    10. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.
    11. Mostafaeipour, Ali & Jadidi, Mohsen & Mohammadi, Kasra & Sedaghat, Ahmad, 2014. "An analysis of wind energy potential and economic evaluation in Zahedan, Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 641-650.
    12. Siyavash Filom & Soheil Radfar & Roozbeh Panahi & Erfan Amini & Mehdi Neshat, 2021. "Exploring Wind Energy Potential as a Driver of Sustainable Development in the Southern Coasts of Iran: The Importance of Wind Speed Statistical Distribution Model," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    13. Duong Minh Ngoc & Kuaanan Techato & Le Duc Niem & Nguyen Thi Hai Yen & Nguyen Van Dat & Montri Luengchavanon, 2021. "A Novel 10 kW Vertical Axis Wind Tree Design: Economic Feasibility Assessment," Sustainability, MDPI, vol. 13(22), pages 1-22, November.
    14. Mehr Gul & Nengling Tai & Wentao Huang & Muhammad Haroon Nadeem & Moduo Yu, 2019. "Assessment of Wind Power Potential and Economic Analysis at Hyderabad in Pakistan: Powering to Local Communities Using Wind Power," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    15. Mostafaeipour, A. & Sedaghat, A. & Dehghan-Niri, A.A. & Kalantar, V., 2011. "Wind energy feasibility study for city of Shahrbabak in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2545-2556, August.
    16. Oner, Yasemin & Ozcira, Selin & Bekiroglu, Nur & Senol, Ibrahim, 2013. "A comparative analysis of wind power density prediction methods for Çanakkale, Intepe region, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 491-502.
    17. Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.
    18. El Alimi, Souheil & Maatallah, Taher & Dahmouni, Anouar Wajdi & Ben Nasrallah, Sassi, 2012. "Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5466-5478.
    19. Khahro, Shahnawaz Farhan & Tabbassum, Kavita & Mahmood Soomro, Amir & Liao, Xiaozhong & Alvi, Muhammad Bux & Dong, Lei & Manzoor, M. Farhan, 2014. "Techno-economical evaluation of wind energy potential and analysis of power generation from wind at Gharo, Sindh Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 460-474.
    20. Gibson, Peter B. & Cullen, Nicolas J., 2015. "Synoptic and sub-synoptic circulation effects on wind resource variability – A case study from a coastal terrain setting in New Zealand," Renewable Energy, Elsevier, vol. 78(C), pages 253-263.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:5:p:3034-3042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.