IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v28y2003i12p1965-1983.html
   My bibliography  Save this article

Comprehensive study of solar conditions in Mozambique: the effect of trade winds on solar components

Author

Listed:
  • Nijegorodov, N.I.
  • Devan, K.R.S.
  • Simao, H.
  • Mabbs, R.

Abstract

A new algorithm to simulate all solar components and optimum slopes, βopt, based on new models for direct normal beam and diffuse radiation and an analytical model to predict βopt, developed at the University of Botswana is applied for complete study of solar conditions in Mozambique. The components of solar radiation depend to a large extent on the number of h of sunshine. However, it is obvious that cloud-cover is determined mainly by the prevailing trade winds, which carry moisture and rain clouds. This is of especial concern in coastal areas. In the current work, hourly, I, daily, H and monthly mean, H̄ components of solar radiation and the optimum slopes of a north–south aligned collector are simulated and analyzed for 21 synoptic stations in Mozambique. Monthly mean daily direct normal, H̄bn solar radiation maps are plotted for December and June and discussed. It is found that, to a great extent, isoinsolation curves are determined by the prevailing trade winds, mountain chains and coastal conditions. Plotted maps of annual mean daily direct normal and global solar radiation also show tremendous dependence on the prevailing winds. Several special locations in Mozambique with quite high or very low solar radiation components are pointed out and the reasons explained.

Suggested Citation

  • Nijegorodov, N.I. & Devan, K.R.S. & Simao, H. & Mabbs, R., 2003. "Comprehensive study of solar conditions in Mozambique: the effect of trade winds on solar components," Renewable Energy, Elsevier, vol. 28(12), pages 1965-1983.
  • Handle: RePEc:eee:renene:v:28:y:2003:i:12:p:1965-1983
    DOI: 10.1016/S0960-1481(03)00038-7
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148103000387
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(03)00038-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nijegorodov, N. & Devan, K.R.S. & Jain, P.K. & Carlsson, S., 1994. "Atmospheric transmittance models and an analytical method to predict the optimum slope of an absorber plate, variously oriented at any latitude," Renewable Energy, Elsevier, vol. 4(5), pages 529-543.
    2. Nijegorodov, N. & Adedoyin, J.A. & Devan, K.R.S., 1997. "A new analytical-empirical model for the instantaneous diffuse radiation and experimental investigation of its validity," Renewable Energy, Elsevier, vol. 11(3), pages 341-350.
    3. Nijegorodov, N. & Luhanga, P.V.C., 1996. "Air mass: Analytical and empirical treatment; an improved formula for air mass," Renewable Energy, Elsevier, vol. 7(1), pages 57-65.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rensheng, Chen & Ersi, Kang & Jianping, Yang & Shihua, Lu & Wenzhi, Zhao & Yongjian, Ding, 2004. "Estimation of horizontal diffuse solar radiation with measured daily data in China," Renewable Energy, Elsevier, vol. 29(5), pages 717-726.
    2. Cuvilas, C.A. & Jirjis, R. & Lucas, C., 2010. "Energy situation in Mozambique: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2139-2146, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Badescu, Viorel & Gueymard, Christian A. & Cheval, Sorin & Oprea, Cristian & Baciu, Madalina & Dumitrescu, Alexandru & Iacobescu, Flavius & Milos, Ioan & Rada, Costel, 2012. "Computing global and diffuse solar hourly irradiation on clear sky. Review and testing of 54 models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1636-1656.
    2. Nijegorodov, N. & Adedoyin, J.A. & Devan, K.R.S., 1997. "A new analytical-empirical model for the instantaneous diffuse radiation and experimental investigation of its validity," Renewable Energy, Elsevier, vol. 11(3), pages 341-350.
    3. Nijegorodov, N. & Luhanga, P.V.C., 1998. "A new model to predict direct normal instantaneous solar radiation, based on laws of spectroscopy, kinetic theory and thermodynamics," Renewable Energy, Elsevier, vol. 13(4), pages 523-530.
    4. Chang, Tian Pau, 2009. "The gain of single-axis tracked panel according to extraterrestrial radiation," Applied Energy, Elsevier, vol. 86(7-8), pages 1074-1079, July.
    5. Hisham Alghamdi & Aníbal Alviz-Meza, 2023. "A Novel Strategy for Converting Conventional Structures into Net-Zero-Energy Buildings without Destruction," Sustainability, MDPI, vol. 15(14), pages 1-14, July.
    6. Zhang, Tao & Li, Yiteng & Chen, Yin & Feng, Xiaoyu & Zhu, Xingyu & Chen, Zhangxing & Yao, Jun & Zheng, Yongchun & Cai, Jianchao & Song, Hongqing & Sun, Shuyu, 2021. "Review on space energy," Applied Energy, Elsevier, vol. 292(C).
    7. Zervas, P.L. & Sarimveis, H. & Palyvos, J.A. & Markatos, N.C.G., 2008. "Prediction of daily global solar irradiance on horizontal surfaces based on neural-network techniques," Renewable Energy, Elsevier, vol. 33(8), pages 1796-1803.
    8. Ahmad, Naseer & Sheikh, Anwar K. & Gandhidasan, P. & Elshafie, Moustafa, 2015. "Modeling, simulation and performance evaluation of a community scale PVRO water desalination system operated by fixed and tracking PV panels: A case study for Dhahran city, Saudi Arabia," Renewable Energy, Elsevier, vol. 75(C), pages 433-447.
    9. Al Garni, Hassan Z. & Awasthi, Anjali & Wright, David, 2019. "Optimal orientation angles for maximizing energy yield for solar PV in Saudi Arabia," Renewable Energy, Elsevier, vol. 133(C), pages 538-550.
    10. Ramez Abdallah & Adel Juaidi & Salameh Abdel-Fattah & Francisco Manzano-Agugliaro, 2020. "Estimating the Optimum Tilt Angles for South-Facing Surfaces in Palestine," Energies, MDPI, vol. 13(3), pages 1-29, February.
    11. Barbón, A. & Ayuso, P. Fortuny & Bayón, L. & Silva, C.A., 2021. "A comparative study between racking systems for photovoltaic power systems," Renewable Energy, Elsevier, vol. 180(C), pages 424-437.
    12. Marucci, Alvaro & Cappuccini, Andrea, 2016. "Dynamic photovoltaic greenhouse: Energy balance in completely clear sky condition during the hot period," Energy, Elsevier, vol. 102(C), pages 302-312.
    13. Memme, Samuele & Fossa, Marco, 2022. "Maximum energy yield of PV surfaces in France and Italy from climate based equations for optimum tilt at different azimuth angles," Renewable Energy, Elsevier, vol. 200(C), pages 845-866.
    14. Chang, Tian Pau, 2009. "Performance evaluation for solar collectors in Taiwan," Energy, Elsevier, vol. 34(1), pages 32-40.
    15. Ibrahim, D., 1995. "Optimum tilt angle for solar collectors used in Cyprus," Renewable Energy, Elsevier, vol. 6(7), pages 813-819.
    16. Poshtiri, Amin Haghighi & Bahar, Safoura & Jafari, Azadeh, 2016. "Daily cooling of one-story buildings using domed roof and solar adsorption cooling system," Applied Energy, Elsevier, vol. 182(C), pages 299-319.
    17. Antonanzas-Torres, F. & Urraca, R. & Polo, J. & Perpiñán-Lamigueiro, O. & Escobar, R., 2019. "Clear sky solar irradiance models: A review of seventy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 374-387.
    18. Chang, Tian Pau, 2009. "Output energy of a photovoltaic module mounted on a single-axis tracking system," Applied Energy, Elsevier, vol. 86(10), pages 2071-2078, October.
    19. Filip Žemla & Ján Cigánek & Danica Rosinová & Erik Kučera & Oto Haffner, 2023. "Complex Positioning System for the Control and Visualization of Photovoltaic Systems," Energies, MDPI, vol. 16(10), pages 1-31, May.
    20. Nijegorodov, N. & Jain, P.K., 1997. "Optimum slope of a north-south aligned absorber plate from the north to the south poles," Renewable Energy, Elsevier, vol. 11(1), pages 107-118.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:28:y:2003:i:12:p:1965-1983. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.