IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v158y2022ics1364032121013162.html
   My bibliography  Save this article

Natural and industrial wastes for sustainable and renewable polymer composites

Author

Listed:
  • Das, Oisik
  • Babu, Karthik
  • Shanmugam, Vigneshwaran
  • Sykam, Kesavarao
  • Tebyetekerwa, Mike
  • Neisiany, Rasoul Esmaeely
  • Försth, Michael
  • Sas, Gabriel
  • Gonzalez-Libreros, Jaime
  • Capezza, Antonio J.
  • Hedenqvist, Mikael S.
  • Berto, Filippo
  • Ramakrishna, Seeram

Abstract

By-products management from industrial and natural (agriculture, aviculture, and others) activities and products are critical for promoting sustainability, reducing pollution, increasing storage space, minimising landfills, reducing energy consumption, and facilitating a circular economy. One of the sustainable waste management approaches is utilising them in developing biocomposites. Biocomposites are eco-friendly materials because of their sustainability and environmental benefits that have comparable performance properties to the synthetic counterparts. Biocomposites can be developed from both renewable and industrial waste, making them both energy efficient and sustainable. Because of their low weight and high strength, biocomposite materials in applications such as automobiles can minimise fuel consumption and conserve energy. Furthermore, biocomposites in energy-based applications could lead to savings in both the economy and energy consumption. Herein, a review of biocomposites made from various wastes and their related key properties (e.g. mechanical and fire) are provided. The article systematically highlights the individual wastes/by-products from agriculture and materials processing industries for composites manufacturing in terms of their waste components (materials), modifications, resultant properties, applications and energy efficiency. Finally, a perspective for the future of biowastes and industrial wastes in polymer composites is discussed.

Suggested Citation

  • Das, Oisik & Babu, Karthik & Shanmugam, Vigneshwaran & Sykam, Kesavarao & Tebyetekerwa, Mike & Neisiany, Rasoul Esmaeely & Försth, Michael & Sas, Gabriel & Gonzalez-Libreros, Jaime & Capezza, Antonio , 2022. "Natural and industrial wastes for sustainable and renewable polymer composites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
  • Handle: RePEc:eee:rensus:v:158:y:2022:i:c:s1364032121013162
    DOI: 10.1016/j.rser.2021.112054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121013162
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.112054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Xiaoqing & Ali, Imdad & Song, Lijian & Song, Peng & Zhang, Youchen & Maria, Semeniuk & Nazmus, Saadat & Yang, Weimin & Dhakal, Hom Nath & Li, Haoyi & Sain, Mohini & Ramakrishna, Seeram, 2020. "A review on recent advancement of nano-structured-fiber-based metal-air batteries and future perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. van de Lindt, J.W. & Carraro, J.A.H. & Heyliger, P.R. & Choi, C., 2008. "Application and feasibility of coal fly ash and scrap tire fiber as wood wall insulation supplements in residential buildings," Resources, Conservation & Recycling, Elsevier, vol. 52(10), pages 1235-1240.
    3. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    4. Hamdan, A. & Mustapha, F. & Ahmad, K.A. & Mohd Rafie, A.S., 2014. "A review on the micro energy harvester in Structural Health Monitoring (SHM) of biocomposite material for Vertical Axis Wind Turbine (VAWT) system: A Malaysia perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 23-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dutta, H. & Bora, D. & Chetia, P. & Bharadwaj, C. & Purbey, R. & Bohra, R.C. & Dutta, K. & Varada Rajulu, A. & Sadiku, E.R. & Periyar Selvam, S. & Gurusamy, P. & Rawal, Ravindra K. & J, Jayaramudu, 2024. "Biopolymer composites with waste chicken feather fillers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    2. Mohd Shahneel Saharudin & R. A. Ilyas & Nuha Awang & Syafawati Hasbi & Islam Shyha & Fawad Inam, 2023. "Advances in Sustainable Nanocomposites," Sustainability, MDPI, vol. 15(6), pages 1-3, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gurunathan Manikandan & P. Rajesh Kanna & Dawid Taler & Tomasz Sobota, 2023. "Review of Waste Cooking Oil (WCO) as a Feedstock for Biofuel—Indian Perspective," Energies, MDPI, vol. 16(4), pages 1-17, February.
    2. Đặng, Tấn-Hiệp & Nguyễn, Xuân-Hoàn & Chou, Chi-Lin & Chen, Bing-Hung, 2021. "Preparation of cancrinite-type zeolite from diatomaceous earth as transesterification catalysts for biodiesel production," Renewable Energy, Elsevier, vol. 174(C), pages 347-358.
    3. Abdul Ghani Olabi & Enas Taha Sayed & Tabbi Wilberforce & Aisha Jamal & Abdul Hai Alami & Khaled Elsaid & Shek Mohammod Atiqure Rahman & Sheikh Khaleduzzaman Shah & Mohammad Ali Abdelkareem, 2021. "Metal-Air Batteries—A Review," Energies, MDPI, vol. 14(21), pages 1-46, November.
    4. Das, Arpita & Li, Hui & Kataki, Rupam & Agrawal, Pratibha S. & Moyon, N.S. & Gurunathan, Baskar & Rokhum, Samuel Lalthazuala, 2023. "Terminalia arjuna bark – A highly efficient renewable heterogeneous base catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 212(C), pages 185-196.
    5. Rahmath Abdulla & Eryati Derman & Thivyasri K.Mathialagan & Abu Zahrim Yaser & Mohd Armi Abu Samah & Jualang Azlan Gansau & Syed Umar Faruq Syed Najmuddin, 2022. "Biodiesel Production from Waste Palm Cooking Oil Using Immobilized Candida rugosa Lipase," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    6. Daniel Micallef & Gerard Van Bussel, 2018. "A Review of Urban Wind Energy Research: Aerodynamics and Other Challenges," Energies, MDPI, vol. 11(9), pages 1-27, August.
    7. Chen, Ying-Chen & Lin, Dai-Ying & Chen, Bing-Hung, 2019. "Metasilicate-based catalyst prepared from natural diatomaceous earth for biodiesel production," Renewable Energy, Elsevier, vol. 138(C), pages 1042-1050.
    8. Kan, Junwu & Fan, Chuntao & Wang, Shuyun & Zhang, Zhonghua & Wen, Jianming & Huang, Leshuai, 2016. "Study on a piezo-windmill for energy harvesting," Renewable Energy, Elsevier, vol. 97(C), pages 210-217.
    9. Ajibike Eunice Akin-Ponnle & Felisberto Sequeira Pereira & Raquel Castro Madureira & Nuno Borges Carvalho, 2022. "From Macro to Micro: Impact of Smart Turbine Energy Harvesters (STEH), on Environmental Sustainability and Smart City Automation," Sustainability, MDPI, vol. 14(3), pages 1-18, February.
    10. Teo, Siow Hwa & Islam, Aminul & Mansir, Nasar & Shamsuddin, Mohd Razali & Joseph, Collin G. & Goto, Motonobu & Taufiq-Yap, Yun Hin, 2022. "Sustainable biofuel production approach: Critical methanol green transesterification by efficient and stable heterogeneous catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    11. Dutta, H. & Bora, D. & Chetia, P. & Bharadwaj, C. & Purbey, R. & Bohra, R.C. & Dutta, K. & Varada Rajulu, A. & Sadiku, E.R. & Periyar Selvam, S. & Gurusamy, P. & Rawal, Ravindra K. & J, Jayaramudu, 2024. "Biopolymer composites with waste chicken feather fillers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    12. Radosław Ciesielski & Mateusz Zakrzewski & Oleksandr Shtyka & Tomasz Maniecki & Adam Rylski & Marek Wozniak & Przemyslaw Kubiak & Krzysztof Siczek, 2022. "The Research on Characteristics of CI Engine Supplied with Biodiesels from Brown and Yellow Grease," Energies, MDPI, vol. 15(11), pages 1-17, June.
    13. Akhabue, Christopher Ehiaguina & Osa-Benedict, Evidence Osayi & Oyedoh, Eghe Amenze & Otoikhian, Shegun Kevin, 2020. "Development of a bio-based bifunctional catalyst for simultaneous esterification and transesterification of neem seed oil: Modeling and optimization studies," Renewable Energy, Elsevier, vol. 152(C), pages 724-735.
    14. Haris Mahmood Khan & Tanveer Iqbal & Saima Yasin & Muhammad Irfan & Muhammad Mujtaba Abbas & Ibham Veza & Manzoore Elahi M. Soudagar & Anas Abdelrahman & Md. Abul Kalam, 2022. "Heterogeneous Catalyzed Biodiesel Production Using Cosolvent: A Mini Review," Sustainability, MDPI, vol. 14(9), pages 1-11, April.
    15. Mia Gotovuša & Ivan Pucko & Marko Racar & Fabio Faraguna, 2022. "Biodiesel Produced from Propanol and Longer Chain Alcohols—Synthesis and Properties," Energies, MDPI, vol. 15(14), pages 1-21, July.
    16. Ho, Lip-Wah, 2016. "Wind energy in Malaysia: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 279-295.
    17. Le-Phuc, Nguyen & Tran, Tri V. & Phan, Thien T. & Ngo, Phuong T. & Ha, Quan L.M. & Luong, Thuy N. & Tran, Thinh H. & Phan, Tuan T., 2021. "High-efficient production of biofuels using spent fluid catalytic cracking (FCC) catalysts and high acid value waste cooking oils," Renewable Energy, Elsevier, vol. 168(C), pages 57-63.
    18. Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Kalogirou, Soteris A. & Gupta, Vijai Kumar & Park, Young-Kwon & Fallahi, Alireza & Sulaiman, Alawi & Ranjbari, Meisam & Rahnama, Hassan & Aghbashl, 2022. "Environmental life cycle assessment of biodiesel production from waste cooking oil: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    19. Luqman Razzaq & Muhammad Farooq & M. A. Mujtaba & Farooq Sher & Muhammad Farhan & Muhammad Tahir Hassan & Manzoore Elahi M. Soudagar & A. E. Atabani & M. A. Kalam & Muhammad Imran, 2020. "Modeling Viscosity and Density of Ethanol-Diesel-Biodiesel Ternary Blends for Sustainable Environment," Sustainability, MDPI, vol. 12(12), pages 1-20, June.
    20. Omojola Awogbemi & Daramy Vandi Von Kallon & Emmanuel Idoko Onuh & Victor Sunday Aigbodion, 2021. "An Overview of the Classification, Production and Utilization of Biofuels for Internal Combustion Engine Applications," Energies, MDPI, vol. 14(18), pages 1-43, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:158:y:2022:i:c:s1364032121013162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.