IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v164y2021icp1284-1289.html
   My bibliography  Save this article

Hydrogen production using iron oxyhydroxide with light irradiation

Author

Listed:
  • Hong, Jeongsoo
  • Suzuki, Norihiro
  • Nakata, Kazuya
  • Terashima, Chiaki
  • Kim, Kyunghwan
  • Fujishima, Akira
  • Katsumata, Ken-ichi

Abstract

In this study, the photo-functional property of iron oxyhydroxide was examined. The study assessed the hydrogen production resulting from UV irradiation of iron oxyhydroxide. In theory, iron oxyhydroxide absorbs the visible light; therefore, it should not produce hydrogen under UV light. However, we succeeded in producing hydrogen under UV irradiation without an applied voltage or any other condition. The amount of hydrogen produced was affected by the presence of oxygen and the solution pH. In addition, the shape and crystallinity of iron oxyhydroxide were not changed after the reaction for hydrogen production. These results demonstrated the circular reaction of iron oxyhydroxide related with the Photo-Fenton reaction.

Suggested Citation

  • Hong, Jeongsoo & Suzuki, Norihiro & Nakata, Kazuya & Terashima, Chiaki & Kim, Kyunghwan & Fujishima, Akira & Katsumata, Ken-ichi, 2021. "Hydrogen production using iron oxyhydroxide with light irradiation," Renewable Energy, Elsevier, vol. 164(C), pages 1284-1289.
  • Handle: RePEc:eee:renene:v:164:y:2021:i:c:p:1284-1289
    DOI: 10.1016/j.renene.2020.10.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120316505
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.10.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saurabh Tembhurne & Fredy Nandjou & Sophia Haussener, 2019. "A thermally synergistic photo-electrochemical hydrogen generator operating under concentrated solar irradiation," Nature Energy, Nature, vol. 4(5), pages 399-407, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Liqing & Wei, Qinghe & Zhang, Lili & Zhao, Yafei & Zhang, Bing, 2021. "NiCo alloy decorated on porous N-doped carbon derived from ZnCo-ZIF as highly efficient and magnetically recyclable catalyst for hydrogen evolution from ammonia borane," Renewable Energy, Elsevier, vol. 173(C), pages 273-282.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isaac Holmes-Gentle & Saurabh Tembhurne & Clemens Suter & Sophia Haussener, 2023. "Kilowatt-scale solar hydrogen production system using a concentrated integrated photoelectrochemical device," Nature Energy, Nature, vol. 8(6), pages 586-596, June.
    2. Sonya Calnan & Stefan Aschbrenner & Fuxi Bao & Erno Kemppainen & Iris Dorbandt & Rutger Schlatmann, 2019. "Prospects for Hermetic Sealing of Scaled-Up Photoelectrochemical Hydrogen Generators for Reliable and Risk Free Operation," Energies, MDPI, vol. 12(21), pages 1-29, November.
    3. Sudhagar Pitchaimuthu & Kishore Sridharan & Sanjay Nagarajan & Sengeni Ananthraj & Peter Robertson & Moritz F. Kuehnel & Ángel Irabien & Mercedes Maroto-Valer, 2022. "Solar Hydrogen Fuel Generation from Wastewater—Beyond Photoelectrochemical Water Splitting: A Perspective," Energies, MDPI, vol. 15(19), pages 1-23, October.
    4. Feng Liang & Roel van de Krol & Fatwa F. Abdi, 2024. "Assessing elevated pressure impact on photoelectrochemical water splitting via multiphysics modeling," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Austin M. K. Fehr & Ayush Agrawal & Faiz Mandani & Christian L. Conrad & Qi Jiang & So Yeon Park & Olivia Alley & Bor Li & Siraj Sidhik & Isaac Metcalf & Christopher Botello & James L. Young & Jacky E, 2023. "Integrated halide perovskite photoelectrochemical cells with solar-driven water-splitting efficiency of 20.8%," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Zhu, Yizhou & Ma, Benchi & He, Baichuan & Ma, Xinyu & Jing, Dengwei, 2023. "Liquid spherical lens as an effective auxiliary optical unit for CPV/T system with remarkable hydrogen production efficiency," Applied Energy, Elsevier, vol. 334(C).
    7. Li, Jieyang & Lin, Meng, 2021. "Unified design guidelines for high flux solar simulator with controllable flux vector," Applied Energy, Elsevier, vol. 281(C).
    8. Simon Caron & Marc Röger & Michael Wullenkord, 2020. "Selection of Solar Concentrator Design Concepts for Planar Photoelectrochemical Water Splitting Devices," Energies, MDPI, vol. 13(19), pages 1-31, October.
    9. Li, Jieyang & Hu, Jinpeng & Lin, Meng, 2022. "A flexibly controllable high-flux solar simulator for concentrated solar energy research from extreme magnitudes to uniform distributions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:164:y:2021:i:c:p:1284-1289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.