IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v157y2022ics1364032121012740.html
   My bibliography  Save this article

Seaweeds as a sustainable source of bioenergy: Techno-economic and life cycle analyses of its biochemical conversion pathways

Author

Listed:
  • Fasahati, P.
  • Dickson, R.
  • Saffron, C.M.
  • Woo, H.C.
  • Liu, J. Jay

Abstract

This study evaluates the environmental impacts, economic potential, and merits of producing bioenergy from seaweed via biological conversion pathways, including the: 1) sugar pathway; (2) volatile fatty acids pathway; and (3) methane pathway to produce ethanol, ethanol and heavier alcohols, and heat and power, respectively. The maximum seaweed price and minimum product selling price are both calculated as economic indicators. Overall, results demonstrate that the sugar platform is economically superior, as it provides a higher average maximum seaweed price of USD 121.6/t compared with USD 57.7/t and USD 24.2/t for volatile fatty acids platform and methane platform, respectively. The minimum product selling price calculated for a range of biomass purchase prices (USD 50–150/dry t) and plant scales (100,000–700,000 dry t of seaweed) indicated that the sugar platform is capable of selling ethanol at prices lower than its 2019 wholesale price (USD 1.38/gal) at smaller plant scales and higher seaweed price compared with volatile fatty acids platform. Cradle-to-grave life cycle assessments were conducted to identify the key drivers of its environmental profile. Three scenarios for the preparation and transportation of seaweed were considered, namely: (1) grinding + pumping; (2) chopping + wet transportation; and (3) chopping + dry transportation. Seaweed grinding and pumping in the biorefinery was identified to be the most sustainable mode of transportation. In addition, our results demonstrated that biofuels can lead to better environmental profiles compared with generation of bioelectricity, as a larger burden is displaced by substituting fossil fuels in the transportation sector.

Suggested Citation

  • Fasahati, P. & Dickson, R. & Saffron, C.M. & Woo, H.C. & Liu, J. Jay, 2022. "Seaweeds as a sustainable source of bioenergy: Techno-economic and life cycle analyses of its biochemical conversion pathways," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
  • Handle: RePEc:eee:rensus:v:157:y:2022:i:c:s1364032121012740
    DOI: 10.1016/j.rser.2021.112011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121012740
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.112011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dickson, Rofice & Ryu, Jun-Hyung & Liu, J. Jay, 2018. "Optimal plant design for integrated biorefinery producing bioethanol and protein from Saccharina japonica: A superstructure-based approach," Energy, Elsevier, vol. 164(C), pages 1257-1270.
    2. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    3. Philippsen, Aaron & Wild, Peter & Rowe, Andrew, 2014. "Energy input, carbon intensity and cost for ethanol produced from farmed seaweed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 609-623.
    4. United Nations UN, 2015. "Transforming our World: the 2030 Agenda for Sustainable Development," Working Papers id:7559, eSocialSciences.
    5. Fasahati, Peyman & Liu, J. Jay, 2015. "Economic, energy, and environmental impacts of alcohol dehydration technology on biofuel production from brown algae," Energy, Elsevier, vol. 93(P2), pages 2321-2336.
    6. Hou, Jian & Zhang, Peidong & Yuan, Xianzheng & Zheng, Yonghong, 2011. "Life cycle assessment of biodiesel from soybean, jatropha and microalgae in China conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5081-5091.
    7. Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Aghbashlo, Mortaza & Karimi, Keikhosro & Tabatabaei, Meisam, 2019. "Shifting fuel feedstock from oil wells to sea: Iran outlook and potential for biofuel production from brown macroalgae (ochrophyta; phaeophyceae)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 626-642.
    8. Fasahati, Peyman & Woo, Hee Chul & Liu, J. Jay, 2015. "Industrial-scale bioethanol production from brown algae: Effects of pretreatment processes on plant economics," Applied Energy, Elsevier, vol. 139(C), pages 175-187.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, J. Jay & Dickson, Rofice & Niaz, Haider & Van Hal, Jaap W. & Dijkstra, J.W. & Fasahati, Peyman, 2022. "Production of fuels and chemicals from macroalgal biomass: Current status, potentials, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Ansub Khan, Mohammad & Abbas, Abiha & Dickson, Rofice, 2023. "A strategy for commercialization of macroalga biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    3. Kiehbadroudinezhad, Mohammadali & Hosseinzadeh-Bandbafha, Homa & Pan, Junting & Peng, Wanxi & Wang, Yajing & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2023. "The potential of aquatic weed as a resource for sustainable bioenergy sources and bioproducts production," Energy, Elsevier, vol. 278(PA).
    4. Valentyna Stanytsina & Volodymyr Artemchuk & Olga Bogoslavska & Artur Zaporozhets & Antonina Kalinichenko & Jan Stebila & Valerii Havrysh & Dariusz Suszanowicz, 2022. "Fossil Fuel and Biofuel Boilers in Ukraine: Trends of Changes in Levelized Cost of Heat," Energies, MDPI, vol. 15(19), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, J. Jay & Dickson, Rofice & Niaz, Haider & Van Hal, Jaap W. & Dijkstra, J.W. & Fasahati, Peyman, 2022. "Production of fuels and chemicals from macroalgal biomass: Current status, potentials, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Kouhgardi, Esmaeil & Zendehboudi, Sohrab & Mohammadzadeh, Omid & Lohi, Ali & Chatzis, Ioannis, 2023. "Current status and future prospects of biofuel production from brown algae in North America: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    3. Milazzo, M.F. & Spina, F. & Primerano, P. & Bart, J.C.J., 2013. "Soy biodiesel pathways: Global prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 579-624.
    4. Gasparatos, A. & von Maltitz, G.P. & Johnson, F.X. & Lee, L. & Mathai, M. & Puppim de Oliveira, J.A. & Willis, K.J., 2015. "Biofuels in sub-Sahara Africa: Drivers, impacts and priority policy areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 879-901.
    5. Milazzo, M.F. & Spina, F. & Vinci, A. & Espro, C. & Bart, J.C.J., 2013. "Brassica biodiesels: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 350-389.
    6. Pradhan, Anup & Mbohwa, Charles, 2014. "Development of biofuels in South Africa: Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1089-1100.
    7. Stefan Dragos Cirstea & Andreea Cirstea & Irimie Emil Popa & Gabriel Radu, 2019. "The Role of Bioenergy in Transition to a Sustainable Bioeconomy – Study on EU Countries," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 21(50), pages 1-75, February.
    8. Baral, Nawa Raj & Neupane, Pratikshya & Ale, Bhakta Bahadur & Quiroz-Arita, Carlos & Manandhar, Shishir & Bradley, Thomas H., 2020. "Stochastic economic and environmental footprints of biodiesel production from Jatropha curcas Linnaeus in the different federal states of Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    9. repec:aud:audfin:v:21:y:2019:i:50:p:75 is not listed on IDEAS
    10. Seber, Gonca & Escobar, Neus & Valin, Hugo & Malina, Robert, 2022. "Uncertainty in life cycle greenhouse gas emissions of sustainable aviation fuels from vegetable oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    11. Collet, Pierre & Hélias, Arnaud & Lardon, Laurent & Steyer, Jean-Philippe & Bernard, Olivier, 2015. "Recommendations for Life Cycle Assessment of algal fuels," Applied Energy, Elsevier, vol. 154(C), pages 1089-1102.
    12. Lucas Reijnders, 2013. "Lipid‐based liquid biofuels from autotrophic microalgae: energetic and environmental performance," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(1), pages 73-85, January.
    13. Correa, Diego F. & Beyer, Hawthorne L. & Possingham, Hugh P. & Thomas-Hall, Skye R. & Schenk, Peer M., 2017. "Biodiversity impacts of bioenergy production: Microalgae vs. first generation biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1131-1146.
    14. Dickson, Rofice & Liu, J. Jay, 2021. "A strategy for advanced biofuel production and emission utilization from macroalgal biorefinery using superstructure optimization," Energy, Elsevier, vol. 221(C).
    15. Joseph Palazzo & Roland Geyer & Sangwon Suh, 2020. "A review of methods for characterizing the environmental consequences of actions in life cycle assessment," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 815-829, August.
    16. Brigljević, Boris & Liu, Jay J. & Lim, Hankwon, 2019. "Comprehensive feasibility assessment of a poly-generation process integrating fast pyrolysis of S. japonica and the Rankine cycle," Applied Energy, Elsevier, vol. 254(C).
    17. Tramberend, Sylvia & Fischer, Günther & Bruckner, Martin & van Velthuizen, Harrij, 2019. "Our Common Cropland: Quantifying Global Agricultural Land Use from a Consumption Perspective," Ecological Economics, Elsevier, vol. 157(C), pages 332-341.
    18. Paulina Schiappacasse & Bernhard Müller & Le Thuy Linh, 2019. "Towards Responsible Aggregate Mining in Vietnam," Resources, MDPI, vol. 8(3), pages 1-15, August.
    19. Pina Puntillo, 2023. "Circular economy business models: Towards achieving sustainable development goals in the waste management sector—Empirical evidence and theoretical implications," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(2), pages 941-954, March.
    20. R. Ebrahimi & S. Choobchian & H. Farhadian & I. Goli & E. Farmandeh & H. Azadi, 2022. "Investigating the effect of vocational education and training on rural women’s empowerment," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-11, December.
    21. Bárbara Galleli & Elder Semprebon & Joyce Aparecida Ramos dos Santos & Noah Emanuel Brito Teles & Mateus Santos de Freitas-Martins & Raquel Teodoro da Silva Onevetch, 2021. "Institutional Pressures, Sustainable Development Goals and COVID-19: How Are Organisations Engaging?," Sustainability, MDPI, vol. 13(21), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:157:y:2022:i:c:s1364032121012740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.